Nanoscale Therapeutic System: Safety Assessment Features
https://doi.org/10.30895/2312-7821-2019-7-3-127-138
Abstract
Nanoscale drugs differ in special physicochemical, biological, pharmacokinetic parameters. These properties can be used to provide targeted delivery, prolong the action of drugs, as well as reduce their side effects. An important problem that needs attention is the study of the potential risks arising from the treatment of such drugs. The aim of the study: analysis of the requirements of domestic and foreign regulators for the safety of nanoscale drugs. The paper presents the classification of the most promising nanosystems containing drugs, and an analysis of the existing principles for assessing their safety in Russia and abroad has been carried out. It was shown that when assessing the safety of nano-sized drugs, along with the properties of the active substance, it is necessary to take into account the properties of the nanosystem (polymer coating, carrier, etc.), related to its size, distribution pattern, charge of nanoparticles, and ability to induce oxidative stress. Domestic and foreign regulatory documents governing the procedure for assessing the safety of pharmacological substances derived from nanotechnology was analyzed. Conclusions: Despite the availability of recommendations from regulatory authorities, further improvement of the requirements for registration and safety assessment of nanoscale drugs is necessary. Further development of the regulatory framework governing the development, quality, efficiency and safety of nanomaterials in medicine is necessary, taking into account the structural issues of the active substance and nano-carriers.
About the Authors
E. M. BovinaRussian Federation
Evgenia M. Bovina
8/2 Petrovsky Blvd, Moscow 127051, Russian Federation
B. K. Romanov
Russian Federation
Boris K. Romanov, Dr. Sci. (Med.), Associate Professor
8/2 Petrovsky Blvd, Moscow 127051, Russian Federation
A. S. Kazakov
Russian Federation
Alexander S. Kazakov, Cand. Sci. (Med.)
8/2 Petrovsky Blvd, Moscow 127051, Russian Federation
6 Miklukho-Maklaya St., Moscow 117198, Russian Federation
N. Yu. Velts
Russian Federation
Nataliya Y. Velts, Cand. Sci. (Biol.), Associate Professor
8/2 Petrovsky Blvd, Moscow 127051, Russian Federation
E. O. Zhuravleva
Russian Federation
Eugeniya O. Zhuravleva
8/2 Petrovsky Blvd, Moscow 127051, Russian Federation
T. M. Bukatina
Russian Federation
Tatyana M. Bukatina, Cand. Sci. (Med.)
8/2 Petrovsky Blvd, Moscow 127051, Russian Federation
R. N. Alyautdin
Russian Federation
Renad N. Alyautdin, Dr. Sci. (Med.), Professor
8/2 Petrovsky Blvd, Moscow 127051, Russian Federation
V. A. Merkulov
Russian Federation
Vadim A. Merkulov, Dr. Sci. (Med.), Professor
8/2 Petrovsky Blvd, Moscow 127051, Russian Federation
References
1. Zhao M, Liu M. New avenues for nanoparticle-related therapies. Nanoscale Res Lett. 2018;13:136. https://doi.org/10.1186/s11671-018-2548-8
2. Vallabani NVS, Singh S. Recent advances and future prospects of iron oxide nanoparticles in biomedicine and diagnostics. 3 Biotech. 2018;8(6):279. https://doi.org/10.1007/s13205-018-1286-z
3. Rafiyath SM, Rasul M, Lee B, Wei G, Lamba G, Liu D. Comparison of safety and toxicity of liposomal doxorubicin vs. conventional anthracyclines: a meta-analysis. Exp Hematol Oncol. 2012;1(1):10. https://doi.org/10.1186/2162-3619-1-10
4. Ventola CL. Progress in nanomedicine: approved and investigational nanodrugs. P T. 2017;42(12):742–55.
5. Storm G, van Bloois L, Steerenberg PA, van Etten E, de Groot G, Crommelin DJA. Liposome encapsulation of doxorubicin: pharmaceutical and therapeutic aspects. J Control Release. 1989;9(3):215–29. https://doi.org/10.1016/0168-3659(89)90090-4
6. Desai N, Trieu V, Yao Z, Louie L, Ci S, Yang A, et al. Increased antitumor activity, intratumor paclitaxel concentrations, and endothelial cell transport of cremophor-free, albumin-bound paclitaxel, ABI-007, compared with cremophor-based paclitaxel. Clin Cancer Res. 2006;12(4):1317–24. https://doi.org/10.1158/1078-0432.CCR-05-1634
7. Manandhar KD, Yadav TP, Prajapati VK, Kumar S, Rai M, Dube A, et al. Antileishmanial activity of nano-amphotericin B deoxycholate. J Antimicrob Chemother. 2008;62(2):376–80. https://doi.org/10.1093/jac/dkn189
8. Havel HA. Where are the nanodrugs? An industry perspective on development of drug products containing nanomaterials. AAPS J. 2016;18(6):1351–3. https://doi.org/10.1208/s12248-016-9970-6
9. Wang YX. Current status of superparamagnetic iron oxide contrast agents for liver magnetic resonance imaging. World J Gastroenterol. 2015;21(47):13400–2. https://doi.org/10.3748/wjg.v21.i47.13400
10. Duncan R, Gaspar R. Nanomedicine(s) under the microscope. Mol Pharm. 2011;8(6):2101–41. https://doi.org/10.1021/mp200394t
11. Gupta R, Xie H. Nanoparticles in daily life: applications, toxicity and regulations. J Environ Pathol Toxicol Oncol. 2018;37(3):209–30. https://doi.org/10.1615/JEnvironPatholToxicolOncol.2018026009
12. Steinmetz NF. Viral nanoparticles as platforms for next-generation therapeutics and imaging devices. Nanomedicine. 2010;6(5):634–41. https://doi.org/10.1016/j.nano.2010.04.005
13. Tran S, DeGiovanni PJ, Piel B, Rai P. Cancer nanomedicine: a review of recent success in drug delivery. Clin Transl Med. 2017;6:44. https://doi.org/10.1186/s40169-017-0175-0
14. Chen F, Hableel G, Zhao ER, Jokerst JV. Multifunctional nanomedicine with silica: role of silica in nanoparticles for theranostic, imaging, and drug monitoring. J Colloid Interface Sci. 2018;521:261–79. https://doi.org/10.1016/j.jcis.2018.02.053
15. Li T, Duan E-Y, Liu C-J, Ma J-G, Cheng P. Application of Gd(III) complexes for magnetic resonance imaging and the improvement of relaxivities via nanocrystallization. Inorg Chem Commun. 2018;98:111–4. https://doi.org/10.1016/j.inoche.2018.10.012
16. Siddiqi KS, Ur Rahman A, Tajuddin, Husen A. Properties of zinc oxide nanoparticles and their activity against microbes. Nanoscale Res Lett. 2018;13:141. https://doi.org/10.1186/s11671-018-2532-3
17. Ribeiro AR, Gemini-Piperni S, Travassos R, Lemgruber L, Silva RC, Rossi AL, et al. Trojan-like internalization of anatase titanium dioxide nanoparticles by human osteoblast cells. Sci Rep. 2016;6:23615. https://doi.org/10.1038/srep23615
18. Bangham AD, Haydon DA. Ultrastructure of membranes: biomolecular organization. Br Med Bull. 1968;24(2):124–6. https://doi.org/10.1093/oxfordjournals.bmb.a070612
19. Gregoriadis G. Drug entrapment in liposomes. FEBS Lett. 1973;36(3):292–6. https://doi.org/10.1016/0014-5793(73)80394-1
20. Kneidl B, Peller M, Winter G, Lindner LH, Hossann M. Thermosensitive liposomal drug delivery systems: state of the art review. Int J Nanomedicine. 2014;9(1):4387–98. https://doi.org/10.2147/IJN.S49297
21. Veremeeva PN, Bovina EM, Grishina IV, Lapteva VL, Palyulin VA, Zefirov NS. Synthesis of amphiphilic diacyl derivatives of 3,7-diazabicyclo[3.3.1]nonan-9-one. Mendeleev Commun. 2018;28(1):25–6. https://doi.org/10.1016/j.mencom.2018.01.006
22. Duncan R, Kopeček J. Soluble synthetic polymers as potential drug carriers. In: Polymers in Medicine. Advances in Polymer Science, vol 57. Berlin, Heidelberg: Springer-Verlag; 1984. P. 51–101. https://doi.org/10.1007/3-540-12796-8_10
23. Mandal A, Bisht R, Rupenthal ID, Mitra AK. Polymeric micelles for ocular drug delivery: from structural frameworks to recent preclinical studies. J Control Release. 2017;248:96–116. https://doi.org/10.1016/j.jconrel.2017.01.012
24. Junghanns JU, Müller RH. Nanocrystal technology, drug delivery and clinical applications. Int J Nanomedicine. 2008;3(3):295–309. https://doi.org/10.2147/IJN.S595
25. Stroes ES, Nierman MC, Meulenberg JJ, Franssen R, Twisk J, Henny CP, et al. Intramuscular administration of AAV1-lipoprotein lipase S447X lowers triglycerides in lipoprotein lipase-deficient patients. Arterioscler Thromb Vasc Biol. 2008;28(12):2303–4. https://doi.org/10.1161/ATVBAHA.108.175620
26. Russell S, Bennett J, Wellman JA, Chung DC, Yu ZF, Tillman A, et al. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial. Lancet. 2017;390(10097):849–60. https://doi.org/10.1016/S0140-6736(17)31868-8
27. Thorn CF, Oshiro C, Marsh S, Hernandez-Boussard T, McLeod H, Klein TE, Altman RB. Doxorubicin pathways: pharmacodynamics and adverse effects. Pharmacogenet Genomics. 2011;21(7):440–6. https://doi.org/10.1097/FPC.0b013e32833ffb56
28. Barenholz Y. Doxil® – the first FDA-approved nano-drug: lessons learned. J Control Release. 2012;160(2):117–34. https://doi.org/10.1016/j.jconrel.2012.03.020
29. Tacar O, Sriamornsak P, Dass CR. Doxorubicin: an update on anticancer molecular action, toxicity and novel drug delivery systems. J Pharm Pharmacol. 2013;65(2):157–70. https://doi.org/10.1111/j.2042-7158.2012.01567.x
30. Banerjee K, Banerjee S, Mandai M. Liposomes as a drug delivery system. In: Prokopovich P, ed. Biological and Pharmaceutical Applications of Nanomaterials. CRC Press; 2015. P. 53–100.
31. Kreuter J, Alyautdin RN. Using nanoparticles to target drugs to the central nervous system. In: Begley DJ, Bradbury MW, Kreuter J, eds. The blood-brain barrier and drug delivery to the CNS. New-York: Marcel Dekker; 2000. P. 205–23.
32. Zylberberg C, Matosevic S. Pharmaceutical liposomal drug delivery: a review of new delivery systems and a look at the regulatory landscape. Drug Deliv. 2016;23(9):3319–29. https://doi.org/10.1080/10717544.2016.1177136
33. Soares S, Sousa J, Pais A, Vitorino C. Nanomedicine: principles, properties, and regulatory issues. Front Chem. 2018;6:360. https://doi.org/10.3389/fchem.2018.00360
34. Manke A, Wang L, Rojanasakul Y. Mechanisms of nanoparticle-induced oxidative stress and toxicity. Biomed Res Int. 2013;2013:942916. http://dx.doi.org/10.1155/2013/942916
35. Aggarwal P, Hall JB, McLeland CB, Dobrovolskaia MA, McNeil SE. Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv Drug Deliv Rev. 2009;61(6):428–37. https://doi.org/10.1016/j.addr.2009.03.009
36. Hussain S, Boland S, Baeza-Squiban A, Hamel R, Thomassen LCJ, Martens JA, et al. Oxidative stress and proinflammatory effects of carbon black and titanium dioxide nanoparticles: role of particle surface area and internalized amount. Toxicology. 2009;260(1–3):142–9. https://doi.org/10.1016/j.tox.2009.04.001
37. Dick CA, Brown DM, Donaldson K, Stone V. The role of free radicals in the toxic and inflammatory effects of four different ultrafine particle types. Inhal Toxicol. 2003;15(1):39–52. https://doi.org/10.1080/08958370304454
38. Shrivastava R, Raza S, Yadav A, Kushwaha P, Flora SJS. Effects of sub-acute exposure to TiO2, ZnO and Al2O3 nanoparticles on oxidative stress and histological changes in mouse liver and brain. Drug Chem Toxicol. 2014;37(3);336–47. https://doi.org/10.3109/01480545.2013.866134
39. Sharma HS, Sharma A. Nanoparticles aggravate heat stress induced cognitive deficits, blood-brain barrier disruption, edema formation, and brain pathology. Prog Brain Res. 2007;162:245–73. https://doi.org/10.1016/S0079-6123(06)62013-X
40. Di Gioacchino M, Petrarca C, Lazzarin F, Di Giampaolo L, Sabbioni E, Boscolo P, et al. Immunotoxicity of nanoparticles. Int J Immunopathol Pharmacol. 2011;24(1 suppl):65S–71S.
41. Miao X, Leng X, Zhang Q. The current state of nanoparticle-induced macrophage polarization and reprogramming research. Int J Mol Sci. 2017;18(2);336. https://doi.org/10.3390/ijms18020336
42. Zhang W, Zhang Z, Zhang Y. The application of carbon nanotubes in target drug delivery systems for cancer therapies. Nanoscale Res Lett. 2011;6:555. https://doi.org/10.1186/1556-276X-6-555
43. Muller J, Huaux F, Moreau N, Misson P, Heilier JF, Delos M, et al. Respiratory toxicity of multi-wall carbon nanotubes. Toxicol Appl Pharmacol. 2005;207(3):221–31. https://doi.org/10.1016/j.taap.2005.01.008
44. Lippmann M. Effects of fiber characteristics on lung deposition, retention, and disease. Environ Health Perspec. 1990;88:311–7. https://doi.org/10.1289/ehp.9088311
45. Wolfram J, Zhu M, Yang Y, Shen J, Gentile E, Paolino D, et al. Safety of nanoparticles in medicine. Curr Drug Targets. 2015;16(14):1671–81. https://doi.org/10.2174/1389450115666140804124808
46. Maupas C, Moulari B, Béduneau A, Lamprecht A, Pellequer Y. Surfactant dependent toxicity of lipid nanocapsules in HaCaT cells. Int J Pharm. 2011;411(1–2):136–41. https://doi.org/10.1016/j.ijpharm.2011.03.056
47. Kedmi R, Ben-Arie N, Peer D. The systemic toxicity of positively charged lipid nanoparticles and the role of Toll-like receptor 4 in immune activation. Biomaterials. 2010;31(26):6867–75. https://doi.org/10.1016/j.biomaterials.2010.05.027
48. Kattan J, Droz JP, Couvreur P, Marino JP, Boutan-Laroze A, Rougier P, et al. Phase I clinical trial and pharmacokinetic evaluation of doxorubicin carried by polyisohexylcyanoacrylate nanoparticles. Invest New Drugs. 1992;10(3):191–9. https://doi.org/10.1007/BF00877245
49. Vezin WR, Florence AT. In vitro heterogeneous degradation of poly(n-alkyl α-cyanoacrylates). J Biomed Mater Res. 1980;14(2):93–106. https://doi.org/10.1002/jbm.820140202
50. Alyautdin RN, Petrov VE, Langer K, Berthold A, Kharkevich DA, Kreuter J. Delivery of loperamide across the blood-brain barrier with polysorbate 80-coated polybutylcyanoacrylate nanoparticles. Pharm Res. 1997;14(3):325–8. https://doi.org/10.1023/A:1012098005098
51. Alyautdin RN, Tezikov EB, Ramge P, Kharkevich DA, Begley DJ, Kreuter J. Significant entry of tubocurarine into the brain of rats by adsorption to polysorbate 80-coated polybutylcyanoacrylate nanoparticles: an in situ brain perfusion study. J Microencapsul. 1998;15(1):67–74. https://doi.org/10.3109/02652049809006836
52. Wang YX. Superparamagnetic iron oxide based MRI contrast agents: Current status of clinical application. Quant Imaging Med Surg. 2011;1(1):35–40. https://doi.org/10.3978/j.issn.2223-4292.2011.08.03
53. Stathopoulos G. Liposomal cisplatin: a new cisplatin formulation. Anticancer Drugs. 2010;21(8):732–6. https://doi.org/10.1097/CAD.0b013e32833d9adf
54. Clift MJ, Raemy DO, Endes C, Ali Z, Lehmann AD, Brandenberger C, et al. Can the Ames test provide an insight into nano-object mutagenicity? Investigating the interaction between nano-objects and bacteria. Nanotoxicology. 2013;7(8):1373–85. https://doi.org/10.3109/17435390.2012.741725
55. Wörle-Knirsch M, Pulskamp K, Krug HF. Oops they did it again! Carbon nanotubes hoax scientists in viability assays. Nano Letters. 2006;6(6):1261–8. https://doi.org/10.1021/nl060177c
Review
For citations:
Bovina E.M., Romanov B.K., Kazakov A.S., Velts N.Yu., Zhuravleva E.O., Bukatina T.M., Alyautdin R.N., Merkulov V.A. Nanoscale Therapeutic System: Safety Assessment Features. Safety and Risk of Pharmacotherapy. 2019;7(3):127-138. (In Russ.) https://doi.org/10.30895/2312-7821-2019-7-3-127-138