Preview

Safety and Risk of Pharmacotherapy

Advanced search

Immune Response Checkpoint Inhibitors: New Risks of a New Class of Antitumor Agents

https://doi.org/10.30895/2312-7821-2020-8-1-9-22

Abstract

The introduction into clinical practice of immune checkpoint inhibitors that block cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), programmed cell death protein-1 (PD-1), and programmed cell death ligand-1 (PD-L1), has improved the prognosis of patients with malignant neoplasms of diff erent localisation. The antitumour eff ect of immune checkpoint inhibitors is based on blocking CTLA-4 and PD-1/PD-L1 signaling pathways and enhancing lymphocyte antitumour activity. However, inhibition of immune checkpoints may lead to dysregulation of immune responses and appearance of a new type of adverse reactions resulting from changes in the activity of immunocompetent cells. The aim of the study was to analyse adverse reactions associated with the use of immune checkpoint inhibitors. It was demonstrated that the structure of immune-mediated adverse reactions varied depending on the class of immune checkpoint inhibitors. The incidence of immune-mediated adverse reactions was higher with CTLA-4 inhibitors as compared with PD-1/PD-L1 inhibitors, and increased signifi cantly in the case of combination therapy. The treatment with CTLA-4 inhibitors most often resulted in skin reactions (rash, itching), gastrointestinal tract reactions (diarrhea, colitis), and endocrine gland problems (hypophysitis). The treatment with PD-1 inhibitors most often led to respiratory disorders (pneumonitis), and in some cases to gastrointestinal disorders (diarrhea, colitis), skin reactions (rash, itching), and endocrine gland problems (hypothyroidism), but they were less common. The treatment with PD-L1 inhibitors was associated with the development of pneumonitis. The development of immune-mediated adverse reactions may require discontinuation of treatment and administration of immunosuppressants, therefore early diagnosis and timely treatment of complications are important prerequisites for successful antitumour therapy. Further study of the mechanisms of immune-mediated adverse reaction development will optimise antitumour therapy with immune checkpoint inhibitors. 

About the Authors

E. V. Shubnikova
Scientific Centre for Expert Evaluation of Medicinal Products
Russian Federation

Elena V. Shubnikova, Cand. Sci. (Med.)

8/2 Petrovsky Blvd, Moscow 127051



T. M. Bukatina
Scientific Centre for Expert Evaluation of Medicinal Products
Russian Federation

Tatyana M. Bukatina, Cand. Sci. (Med.)

8/2 Petrovsky Blvd, Moscow 127051



N. Yu. Velts
Scientific Centre for Expert Evaluation of Medicinal Products
Russian Federation

Nataliya Yu. Velts, Cand. Sci. (Biol.), Associate Professor

8/2 Petrovsky Blvd, Moscow 127051



D. A. Kaperko
Scientific Centre for Expert Evaluation of Medicinal Products
Russian Federation

Dmitry A. Kaperko

8/2 Petrovsky Blvd, Moscow 127051



G. V. Kutekhova
Scientific Centre for Expert Evaluation of Medicinal Products
Russian Federation

Galina V. Kutekhova

8/2 Petrovsky Blvd, Moscow 127051



References

1. Rosenblum MD, Remedios KA, Abbas AK. Mechanisms of human autoimmunity. J Clin Invest. 2015;125(6):2228–33. https://doi.org/10.1172/JCI78088

2. Chen L, Flies DB. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat Rev Immunol. 2013;13(4):227–42. https://doi.org/10.1038/nri3405

3. Nasonov EL. Immune checkpoint inhibition and autoimmunity: rheumatological problems. Nauchno-prakticheskaya revmatologiya = Rheumatology Science and Practice. 2018;56(1):5–9 (In Russ.) https://doi.org/10.14412/1995-4484-2018-5-9

4. Thommen DS, Schumacher TN. T cell dysfunction in cancer. Cancer Cell. 2018;33(4):547–62. https://doi.org/10.1016/j.ccell.2018.03.012

5. Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711–23. https://doi.org/10.1056/NEJMoa1003466

6. Robert C, Schachter J, Long GV, Arance A, Grob JJ, Mortier L, et al. Pembrolizumab versus ipilimumab in advanced melanoma. New Engl J Med. 2015;372(26):2521–32. https://doi.org/10.1056/NEJMoa1503093

7. Robert C, Long GV, Brady B, Dutriaux C, Maio M, Mortier L, et al. Nivolumab in previously untreated melanoma without BRAF mutation. New Engl J Med. 2015;372(4):320–30. https://doi.org/10.1056/NEJMoa1412082

8. Topalian SL, Sznol M, McDermott DF, Kluger HM, Carvajal RD, Sharfman WH, et al. Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab. J Clin Oncol. 2014;32(10):1020–30. https://doi.org/10.1200/JCO.2013.53.0105

9. DeVita VT Jr, Rosenberg SA. Two hundred years of cancer research. N Engl J Med. 2012;366(23):2207–14. https://doi.org/10.1056/NEJMra1204479

10. Kirkwood JM, Butterfi eld LH, Tarhini AA, Zarour H, Kalinski P, Ferrone S. Immunotherapy of cancer in 2012. CA Cancer J Clin. 2012;62(5):309–35. https://doi.org/10.3322/caac.20132

11. Vesely MD, Kershaw MH, Schreiber RD, Smyth MJ. Natural innate and adaptive immunity to cancer. Annu Rev Immunol. 2011;29:235–71. https://doi.org/10.1146/annurev-immunol-031210-101324

12. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12(4):252–64. https://doi.org/10.1038/nrc3239

13. Lepik KV. Immune checkpoint inhibitors in the treatment of lymphomas. Klinicheskaya onkogematologiya = Clinical Oncohematology. 2018;11(4):303–12 (In Russ.) https://doi.org/10.21320/2500-2139-2018-11-4-303-312

14. Callahan MK, Wolchok JD. At the bedside: CTLA-4- and PD1-blocking antibodies in cancer immunotherapy. J Leukoc Biol. 2013;94(1):41–53. https://doi.org/10.1189/jlb.1212631

15. Poprach A, Lakomý R, Büchler T. Immunotherapy of renal cell carcinoma. Klin Onkol. 2017;30(S3):55–61. https://doi.org/10.14735/amko20173S55

16. Sakamuri D, Glitza IC, Betancourt Cuellar SL, Subbiah V, Fu S, Tsimberidou AM, et al. Phase I dose-escalation study of anti-CTLA-4 antibody ipilimumab and lenalidomide in patients with advanced cancers. Mol Cancer Ther. 2018;17(3):671–6. https://doi.org/10.1158/1535-7163.MCT-17-0673

17. Simmons D, Lang E. The most recent oncologic emergency: what emergency physicians need to know about the potential complications of immune checkpoint inhibitors. Cureus. 2017;9(10):e1774. https://doi.org/10.7759/cureus.1774

18. Calvo CR, Amsen D, Kruisbeek AM. Cytotoxic T lymphocyte antigen 4 (CTLA-4) interferes with extracellular signal-regulated kinase (ERK) and Jun NH2-terminal kinase (JNK) activation, but does not affect phosphorylation of T cell receptor zeta and ZAP70. J Exp Med. 1997;186(10):1645–53. https://doi.org/10.1084/jem.186.10.1645

19. Carreno BM, Bennett F, Chau TA, Ling V, Luxenberg D, Jussif J, et al. CTLA-4 (CD152) can inhibit T cell activation by two different mechanisms depending on its level of cell surface expression. J Immunol. 2000;165(3):1352–6. https://doi.org/10.4049/jimmunol.165.3.1352

20. Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol. 2008;26:677–704. https://doi.org/10.1146/annurev.immunol.26.021607.090331

21. Lee SJ, Jang BC, Lee SW, Yang YI, Suh SI, Park YM, et al. Interferon regulatory factor-1 is prerequisite to the constitutive expression and IFN-gamma-induced upregulation of B7-H1 (CD274). FEBS Lett. 2006;580(3):755–62. https://doi.org/10.1016/j.febslet.2005.12.093

22. Liu J, Hamrouni A, Wolowiec D, Coiteux V, Kuliczkowski K, Hetuin D, et al. Plasma cells from multiple myeloma patients express B7-H1 (PD-L1) and increase expression after stimulation with IFN-γ and TLR ligands via a MyD88-, TRAF6-, and MEK-dependent pathway. Blood. 2007;110(1):296–304. https://doi.org/10.1182/blood-2006-10-051482

23. Fife BT, Pauken KE, Eagar TN, Obu T, Wu J, Tang Q, et al. Interactions between PD-1 and PD-L1 promote tolerance by blocking the TCR-induced stop signal. Nat Immunol. 2009;10(11):1185–92. https://doi.org/10.1038/ni.1790

24. Yokosuka T, Takamatsu M, Kobayashi-Imanishi W, Hashimoto-Tane A, Azuma M, Saito T. Programmed cell death 1 forms negative costimulatory microclusters that directly inhibit T cell receptor signaling by recruiting phosphatase SHP2. J Exp Med. 2012;209(6):1201–17. https://doi.org/10.1084/jem.20112741

25. Chemnitz JM, Parry RV, Nichols KE, June CH, Riley JL. SHP-1 and SHP-2 associate with immunoreceptor tyrosinebased switch motif of programmed death 1 upon primary human T cell stimulation, but only receptor ligation prevents T cell activation. J Immunol. 2004;173(2):945–54. https://doi.org/10.4049/jimmunol.173.2.945

26. Nurieva R, Thomas S, Nguyen T, Martin-Orozco N, Wang Y, Kaja MK, et al. T-cell tolerance or function is determined by combinatorial costimulatory signals. EMBO J. 2006;25(11):2623–33. https://doi.org/10.1038/sj.emboj.7601146

27. Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB, et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med. 2002;8(8):793–800. https://doi.org/10.1038/nm730

28. Okazaki T, Honjo T. PD-1 and PD-1 ligands: from discovery to clinical application. Int Immunol. 2007;19(7):813–24. https://doi.org/10.1093/intimm/dxm057

29. Sayapina MS. Immunoregulatory functions of PD-1/PD-L1 inhibitors and development of resistance to them. Zlokachestvennye opukholi = Malignant Tumours. 2017;(2):94–9 (In Russ.) https://doi.org/10.18027/2224-5057-2017-2-94-99

30. Leach DR, Krummel MF, Allison JP. Enhancement of antitumor immunity by CTLA-4 blockade. Science. 1996;271(5256):1734–6. https://doi.org/10.1126/science.271.5256.1734

31. Khalil DN, Smith EL, Brentjens RJ, Wolchok JD. The future of cancer treatment: immunomodulation, CARs and combination immunotherapy. Nat Rev Clin Oncol. 2016;13(5):273–90. https://doi.org/10.1038/nrclinonc.2016.25

32. Boussiotis VA. Molecular and biochemical aspects of the PD-1 checkpoint pathway. N Engl J Med. 2016;375(18):1767–78. https://doi.org/10.1056/NEJMra1514296

33. Yuzhakova DV, Shirmanova MV, Sergeeva TF, Zagaynova EV, Lukyanov КА. Immunotherapy of cancer (review). Sovremennye tehnologii v medicine = Modern Technologies in Medicine. 2016;8(1):173–82 (In Russ.) http://dx.doi.org/10.17691/stm2016.8.1.23

34. Campoli M, Ferrone S. HLA antigen changes in malignant cells: epigenetic mechanisms and biologic significance. Oncogene. 2008;27(45):5869–85. https://doi.org/10.1038/onc.2008.273

35. Bolotina LV, Kaprin AD. Immuno-oncology: new possibilities of drug therapy for solid tumors. Onkologiya. Zhurnal imeni P.A. Gertsena = P.A. Herzen Journal of Oncology. 2017;6(5):74–80 (In Russ.) https://doi.org/10.17116/onkolog20176574-80

36. Merelli B, Massi D, Cattaneo L, Mandalà M. Targeting the PD1/PD-L1 axis in melanoma: biological rationale, clinical challenges and opportunities. Crit Rev Oncol Hematol. 2014;89(1):140–65. https://doi.org/10.1016/j.critrevonc.2013.08.002

37. Rumyantsev AA, Tjulandin SA. Effi cacy of immune checkpoints inhibitors in the treatment of solid tumors. Prakticheskaya onkologiya = Practical Oncology. 2016;17(2):74–89 (In Russ.)

38. Ross K, Jones RJ. Immune checkpoint inhibitors in renal cell carcinoma. Clin Sci (Lond). 2017;131(21):2627–42. https://doi.org/10.1042/CS20160894

39. Ott PA, Hodi FS, Robert C. CTLA-4 and PD-1/PD-L1 blockade: new immunotherapeutic modalities with durable clinical benefi t in melanoma patients. Clin Cancer Res. 2013;19(19):5300–9. https://doi.org/10.1158/1078-0432.CCR-13-0143

40. Scott AM, Wolchok JD, Old LJ. Antibody therapy of cancer. Nat Rev Cancer. 2012;12(4):278–87. https://doi.org/10.1038/nrc3236

41. Melero I, Hervas-Stubbs S, Glennie M, Pardoll DM, Chen L. Immunostimulatory monoclonal antibodies for cancer therapy. Nat Rev Cancer. 2007;7(2):95–106. https://doi.org/10.1038/nrc2051

42. Dillman RO. Cancer immunotherapy. Cancer Biother Radiopharm. 2011;26(1):1–64. https://doi.org/10.1089/cbr.2010.0902

43. Mahoney KM, Freeman GJ, McDermott DF. The next immune-checkpoint inhibitors: PD-1/PD-L1 blockade in melanoma. Clin Ther. 2015;37(4):764–82. https://doi.org/10.1016/j.clinthera.2015.02.018

44. Niezgoda A, Niezgoda P, Czajkowski R. Novel approaches to treatment of advanced melanoma: a review on targeted therapy and immunotherapy. Biomed Res Int. 2015;2015:851387. https://doi.org/10.1155/2015/851387

45. Martins F, Sofi ya L, Sykiotis GP, Lamine F, Maillard M, Fraga M, et al. Adverse effects of immune-checkpoint inhibitors: epidemiology, management and surveillance. Nat Rev Clin Oncol. 2019;16(9):563–80. https://doi.org/10.1038/s41571-019-0218-0

46. Robert C, Thomas L, Bondarenko I, O’Day S, Weber J, Garbe C, et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med. 2011;364(26):2517– 26. https://doi.org/10.1056/NEJMoa1104621

47. O’Day SJ, Maio M, Chiarion-Sileni V, Gajewski TF, Pehamberger H, Bondarenko IN, et al. Efficacy and safety of ipilimumab monotherapy in patients with pretreated advanced melanoma: a multicenter single-arm phase II study. Ann Oncol. 2010;21(8):1712–7. https://doi.org/10.1093/annonc/mdq013

48. Kharkevich GY, Demidov LV. Efficacy of nivolumab in advanced melanoma. Zlokachestvennye opukholi = Malignant Tumours. 2017;7(3):62–70 (In Russ.) https://doi.org/10.18027/2224-5057-2017-3-62-69

49. Daskivich TJ, Belldegrun A. Re: Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. Eur Urol. 2015;67(4):816–7. https://doi.org/10.1016/j.eururo.2014.12.052

50. Voena C, Chiarle R. Advances in cancer immunology and cancer immunotherapy. Discov Med. 2016;21(114):125–33.

51. Borghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M, Ready NE, et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med. 2015;373(17):1627–39. https://doi.org/10.1056/NEJMoa1507643

52. Brahmer J, Reckamp KL, Baas P, Crinò L, Eberhardt WE, Poddubskaya E, et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med. 2015;373(2):123–35. https://doi.org/10.1056/NEJMoa1504627

53. Brahmer JR, Drake CG, Wollner I, Powderly JD, Picus J, Sharfman WH, et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol. 2010;28(19):3167–75. https://doi.org/10.1200/JCO.2009.26.7609

54. Hamid O, Robert C, Daud A, Hodi FS, Hwu WJ, Keff ord R, et al. Safety and tumor responses with lambrolizumab (antiPD-1) in melanoma. N Engl J Med. 2013;369(2):134–44. https://doi.org/10.1056/nejmoa1305133

55. Reichert JM. Antibodies to watch in 2017. mAbs. 2017;9(2):167–81. https://doi.org/10.1080/19420862.2016.1269580

56. Mann JE. Atezolizumab (Tecentriq®). Oncology Times. 2017;39(4):31. https://doi.org/10.1097/01.cot.0000513325.52233.f1

57. Baxi S, Yang A, Gennarelli RL, Khan N, Wang Z, Boyce L, Korenstein D. Immune-related adverse events for anti-PD-1 and anti-PD-L1 drugs: systematic review and meta-analysis. BMJ. 2018;360:k793. https://doi.org/10.1136/bmj.k793

58. Xu C, Chen YP, Du XJ, Liu JQ, Huang CL, Chen L, et al. Comparative safety of immune checkpoint inhibitors in cancer: systematic review and network meta-analysis. BMJ. 2018;363:k4226. https://doi.org/10.1136/bmj.k4226

59. Postow M, Wolchok J. Toxicities associated with checkpoint inhibitor immunotherapy. UpToDate Feb 22, 2018. https:// www.uptodate.com/contents/special-considerations-andtoxicities-associated-with-checkpoint-inhibitor-immunotherapy

60. Buchbinder EI, Desai A. CTLA-4 and PD-1 pathways: similarities, differences, and implications of their inhibition. Am J Clin Oncol. 2016;39(1):98–106. https://doi.org/10.1097/COC.0000000000000239

61. Wolchok JD, Kluger H, Callahan MK, Postow MA, Rizvi NA, Lesokhin AM, et al. Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med. 2013;369(2):122–33. https://doi.org/10.1056/NEJMoa1302369

62. 62Kharkevich GYu, Orlova KV. Immuno-related adverse events of checkpoint inhibitors. Prakticheskaya onkologiya = Practical Oncology. 2016;17(2):110–8 (In Russ.)

63. Thallinger C, Füreder T, Preusser M, Heller G, Müllauer L, Höller C, et al. Review of cancer treatment with immune checkpoint inhibitors: current concepts, expectations, limitations and pitfalls. Wien Klin Wochenschr. 2018;130(3-4):85–91. https://doi.org/10.1007/s00508-017-1285-9

64. Michot JM, Bigenwald C, Champiat S, Collins M, Carbonnel F, Postel-Vinay S, et al. Immune-related adverse events with immune checkpoint blockade: a comprehensive review. Eur J Cancer. 2016;54:139–48. https://doi.org/10.1016/j.ejca.2015.11.016

65. Stucci S, Palmirotta R, Passarelli A, Silvestris E, Argentiero A, Lanotte L, et al. Immune-related adverse events during anticancer immunotherapy: pathogenesis and management. Oncol Lett. 2017;14(5):5671–80. https://doi.org/10.3892/ol.2017.6919

66. Brahmer JR, Lacchetti C, Schneider BJ, Atkins MB, Brassil KJ, Caterino JM, et al. Management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: American Society of Clinical Oncology clinical practice guideline. J Clin Oncol. 2018;36(17):1714–68. https://doi.org/10.1200/JCO.2017.77.6385

67. Puzanov I, Diab A, Abdallah K, Bingham CO 3rd, Brogdon C, Dadu R, et al. Managing toxicities associated with immune checkpoint inhibitors: consensus recommendations from the Society for Immunotherapy of Cancer (SITC) Toxicity Management Working Group. J Immunother Cancer. 2017;5(1):95. https://doi.org/10.1186/s40425-017-0300-z

68. Maio M, Scherpereel A, Calabrò L, Aerts J, Cedres Perez S, Bearz A, et al. Tremelimumab as second-line or third-line treatment in relapsed malignant mesothelioma (DETERMINE): a multicentre, international, randomised, double-blind, placebo-controlled phase 2b trial. Lancet Oncol. 2017;18(9):1261–73. https://doi.org/10.1016/S1470-2045(17)30446-1

69. Larkin J, Hodi FS, Wolchok JD. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373(13):1270–1. https://doi.org/10.1056/NEJMc1509660

70. Seiwert TY, Burtness B, Mehra R, Weiss J, Berger R, Eder JP, et al. Safety and clinical activity of pembrolizumab for treatment of recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-012): an open-label, multicentre, phase 1b trial. Lancet Oncol. 2016;17(7):956–65. https://doi.org/10.1016/S1470-2045(16)30066-3

71. Rosenberg JE, Hoff man-Censits J, Powles T, van der Heijden MS, Balar AV, Necchi A, et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet. 2016;387(10031):1909–20. https://doi.org/10.1016/S0140-6736(16)00561-4

72. Weber JS, Dummer R, de Pril V, Lebbé C, Hodi FS, MDX01020 Investigators. Patterns of onset and resolution of immune-related adverse events of special interest with ipilimumab: detailed safety analysis from a phase 3 trial in patients with advanced melanoma. Cancer. 2013;119(9):1675–82. https://doi.org/10.1002/cncr.27969

73. Postow MA, Sidlow R, Hellmann MD. Immune-related adverse events associated with immune checkpoint blockade. N Engl J Med. 2018;378(2):158–68. https://doi.org/10.1056/NEJMra1703481

74. Lacouture ME, Wolchok JD, Yosipovitch G, Kähler KC, Busam KJ, Hauschild A. Ipilimumab in patients with cancer and the management of dermatologic adverse events. J Am Acad Dermatol. 2014;71(1):161–9. https://doi.org/10.1016/j.jaad.2014.02.035

75. Reutova EV, Laktionov KP, Breder VV, Sarantseva KA, Okruzhnova MA, Peregudova MV. Immune-mediated adverse events associated with immune checkpoint inhibitors therapy. Zlokachestvennye opukholi = Malignant Tumours. 2016;(4):68–76 (In Russ.) https://doi.org/10.18027/2224-5057-2016-4-68-76

76. Kaehler KC, Piel S, Livingstone E, Schilling B, Hauschild A, Schadendorf D. Update on immunologic therapy with anti CTLA-4 antibodies in melanoma: identifi cation of clinical and biological response patterns, immune-related adverse events, and their management. Semin Oncol. 2010;37(5):485–98. https://doi.org/10.1053/j.seminoncol.2010.09.003

77. Trinidad C, Nelson KC, Glitza Oliva IC, Torres-Cabala CA, Nagarajan P, Tetzlaff MT, et al. Dermatologic toxicity from immune checkpoint blockade therapy with an interstitial granulomatous pattern. J Cutan Pathol. 2018;45(7):504–7. https://doi.org/10.1111/cup.13150

78. Villadolid J, Amin A. Immune checkpoint inhibitors in clinical practice: update on management of immune-related toxicities. Transl Lung Cancer Res. 2015;4(5):560–75. https://doi.org/10.3978/j.issn.2218-6751.2015.06.06

79. Eggermont AM, Chiarion-Sileni V, Grob JJ, Dummer R, Wolchok JD, Schmidt H, et al. Prolonged survival in stage III melanoma with ipilimumab adjuvant therapy. N Engl J Med. 2016;375(19):1845–55. https://doi.org/10.1056/NEJMoa1611299

80. Herbst RS, Baas P, Kim DW, Felip E, Pérez-Gracia JL, Han JY, et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet. 2016;387(10027):1540–50. https://doi.org/10.1016/S0140-6736(15)01281-7

81. Eggermont AMM, Blank CU, Mandala M, Long GV, Atkinson V, Dalle S, et al. Adjuvant pembrolizumab versus placebo in resected stage III melanoma. N Engl J Med. 2018;378(19):1789–801. https://doi.org/10.1056/NEJMoa1802357

82. Wolchok JD, Chiarion-Sileni V, Gonzalez R, Rutkowski P, Grob JJ, Cowey CL, et al. Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med. 2017;377(14):1345–56. https://doi.org/10.1056/NEJMoa1709684

83. Motzer RJ, Tannir NM, McDermott DF, Arén Frontera O, Melichar B, Choueiri TK, et al. Nivolumab plus ipilimumab versus sunitinib in advanced renal-cell carcinoma. N Engl J Med. 2018;378(14):1277–90. https://doi.org/10.1056/NEJMoa1712126

84. Hellmann MD, Ciuleanu TE, Pluzanski A, Lee JS, Otterson GA, Audigier-Valette C, et al. Nivolumab plus ipilimumab in lung cancer with a high tumor mutational burden. N Engl J Med. 2018;378(22):2093–104. https://doi.org/10.1056/NEJMoa1801946

85. Gulley JL, Rajan A, Spigel DR, Iannotti N, Chandler J, Wong DJL, et al. Avelumab for patients with previously treated metastatic or recurrent non-small-cell lung cancer (JAVELIN Solid Tumor): dose-expansion cohort of a multicentre, openlabel, phase 1b trial. Lancet Oncol. 2017;18(5):599–610. https://doi.org/10.1016/S1470-2045(17)30240-1

86. Kaufman HL, Russell J, Hamid O, Bhatia S, Terheyden P, D’Angelo SP, et al. Avelumab in patients with chemotherapy-refractory metastatic Merkel cell carcinoma: a multicentre, single-group, open-label, phase 2 trial. Lancet Oncol. 2016;17(10):1374–85. https://doi.org/10.1016/S1470-2045(16)30364-3

87. Rittmeyer A, Barlesi F, Waterkamp D, Park K, Ciardiello F, von Pawel J, et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. Lancet. 2017;389(10066):255–65. https://doi.org/10.1016/S0140-6736(16)32517-X

88. Garassino MC, Cho BC, Kim JH, Mazières J, Vansteenkiste J, Lena H, et al. Durvalumab as third-line or later treatment for advanced non-small-cell lung cancer (ATLANTIC): an openlabel, single-arm, phase 2 study. Lancet Oncol. 2018;19(4):521– 36. https://doi.org/10.1016/S1470-2045(18)30144-X

89. Sibaud V. Dermatologic reactions to immune checkpoint inhibitors: skin toxicities and immunotherapy. Am J Clin Dermatol. 2018;19(3):345–61. https://doi.org/10.1007/s40257-017-0336-3

90. Hua C, Boussemart L, Mateus C, Routier E, Boutros C, Cazenave H, et al. Association of vitiligo with tumor response in patients with metastatic melanoma treated with pembrolizumab. JAMA Dermatol. 2016;152(1):45–51. https://doi.org/10.1001/jamadermatol.2015.2707

91. Phan GQ, Yang JC, Sherry RM, Hwu P, Topalian SL, Schwartzentruber DJ, et al. Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc Natl Acad Sci USA. 2003;100(14):8372–7. https://doi.org/10.1073/pnas.1533209100

92. Berman D, Parker SM, Siegel J, Chasalow SD, Weber J, Galbraith S, et al. Blockade of cytotoxic T-lymphocyte antigen-4 by ipilimumab results in dysregulation of gastrointestinal immunity in patients with advanced melanoma. Cancer Immun. 2010;10:11.

93. Haanen JBAG, Carbonnel F, Robert C, Kerr KM, Peters S, Larkin J, Jordan K, ESMO Guidelines Committee. Management of toxicities from immunotherapy: ESMO clinical practice guidelines for diagnosis, treatment and follow up. Ann Oncol. 2018;29(Suppl 4):iv264-iv266. https://doi.org/10.1093/annonc/mdy162

94. Sosa A, Lopez Cadena E, Simon Olive C, Karachaliou N, Rosell R. Clinical assessment of immune-related adverse events. Ther Adv Med Oncol. 2018;10:1758835918764628. https://doi.org/10.1177/1758835918764628

95. Sznol M, Callahan MK, Yuan J, Wolchok J. Key issues in the management of gastrointestinal immune-related adverse events associated with ipilimumab administration. Commun Oncol. 2013;10(12):351–8. https://doi.org/10.12788/j.cmonc.0055

96. Oble DA, Mino-Kenudson M, Goldsmith J, Hodi FS, Seliem RM, Dranoff G, et al. Alpha-CTLA-4 mAb-associated panenteritis: a histologic and immunohistochemical analysis. Am J Surg Pathol. 2008;32(8):1130–7. https://doi.org/10.1097/PAS.0b013e31817150e3

97. Fessas P, Possamai LA, Clark J, Daniels E, Gudd C, Mullish BH, et al. Immunotoxicity from checkpoint inhibitor therapy: clinical features and underlying mechanisms. Immunology. 2020;159(2):167–77. https://doi.org/10.1111/imm.13141

98. Karamchandani DM, Chetty R. Immune checkpoint inhibitorinduced gastrointestinal and hepatic injury: pathologists’ perspective. J Clin Pathol. 2018;71(8):665–71. https://doi.org/10.1136/jclinpath-2018-205143

99. Chuzi S, Tavora F, Cruz M, Costa R, Chae YK, Carneiro BA, Giles FJ. Clinical features, diagnostic challenges, and management strategies in checkpoint inhibitor-related pneumonitis. Cancer Manag Res. 2017;9:207–13. https://doi.org/10.2147/ CMAR.S136818

100. Khoja L, Day D, Wei-Wu Chen T, Siu LL, Hansen AR. Tumour- and class-specifi c patterns of immune-related adverse events of immune checkpoint inhibitors: a systematic review. Ann Oncol. 2017;28(10):2377–85. https://doi.org/10.1093/annonc/mdx286

101. Naidoo J, Wang X, Woo KM, Iyriboz T, Halpenny D, Cunningham J, et al. Pneumonitis in patients treated with antiprogrammed death-1/programmed death ligand 1 therapy. J Clin Oncol. 2017;35(7):709–17. https://doi.org/10.1200/ JCO.2016.68.2005

102. Corsello SM, Barnabei A, Marchetti P, De Vecchis L, Salvatori R, Torino F. Endocrine side effects induced by immune checkpoint inhibitors. J Clin Endocrinol Metab. 2013;98(4):1361–75. https://doi.org/10.1210/jc.2012-4075

103. Cukier P, Santini FC, Scaranti M, Hoff AO. Endocrine side effects of cancer immunotherapy. Endocr Relat Cancer. 2017;24(12):T331–47. https://doi.org/10.1530/ERC-17-0358

104. Faje A. Immunotherapy and hypophysitis: clinical presentation, treatment, and biologic insights. Pituitary. 2016;19(1):82–92. https://doi.org/10.1007/s11102-015-0671-4

105. Lin HH, Gutenberg A, Chen TY, Tsai NM, Lee CJ, Cheng YC, et al. In situ activation of pituitary-infi ltrating T lymphocytes in autoimmune hypophysitis. Sci Rep. 2017;7:43492. https://doi.org/10.1038/srep43492

106. Iwama S, De Remigis A, Callahan MK, Slovin SF, Wolchok JD, Caturegli P. Pituitary expression of CTLA-4 mediates hypophysitis secondary to administration of CTLA-4 blocking antibody. Sci Transl Med. 2014;6(230):230ra45. https://doi.org/10.1126/scitranslmed.3008002

107. González-Rodríguez E, Rodríguez-Abreu D, Spanish Group for Cancer Immuno-Biotherapy (GETICA). Immune check point inhibitors: review and management of endocrine adverse events. Oncologist. 2016;21(7):804–16. https://doi.org/10.1634/theoncologist.2015-0509

108. Lee H, Hodi FS, Giobbie-Hurder A, Ott PA, Buchbinder EI, Haq R, et al. Characterization of thyroid disorders in patients receiving immune checkpoint inhibition therapy. Cancer Immunol Res. 5(12):1133–40. https://doi.org/10.1158/2326-6066.CIR-17-0208

109. Suzman DL, Pelosof L, Rosenberg A, Avigan MI. Hepatotoxicity of immune checkpoint inhibitors: an evolving picture of risk associated with a vital class of immunotherapy agents. Liver Int. 2018;38(6):976–87. https://doi.org/10.1111/liv.13746

110. Cuzzubbo S, Javeri F, Tissier M, Roumi A, Barlog C, Doridam J, et al. Neurological adverse events associated with immune checkpoint inhibitors: review of the literature. Eur J Cancer. 2017;73:1–8. https://doi.org/10.1016/j.ejca.2016.12.001

111. Touat M, Talmasov D, Ricard D, Psimaras D. Neurological toxicities associated with immune-checkpoint inhibitors. Curr Opin Neurol. 2017;30(6):659–68. https://doi.org/10.1097/WCO.0000000000000503

112. Wilgenhof S, Neyns B. Anti-CTLA-4 antibody-induced Guillain-Barré syndrome in a melanoma patient. Ann Oncol. 2011;22(4):991–3. https://doi.org/10.1093/annonc/mdr028

113. Vanoverbeke L, Sprangers B. Management of checkpoint inhibitor-associated renal toxicities. Expert Rev Qual Life Cancer Care. 2017;2(4):215–23. https://doi.org/10.1080/23809000.2017.1369045

114. Shirali AC, Perazella MA, Gettinger S. Association of acute interstitial nephritis with programmed cell death 1 inhibitor therapy in lung cancer patients. Am J Kidney Dis. 2016;68(2):287–91. https://doi.org/10.1053/j.ajkd.2016.02.057

115. Protsenko SA, Antimonik NYu, Bershteyn LM, Novik AV, Nosov DA, Petenko NN, et al. Practical recommendations for the management of immuno-mediated adverse events. Zlokachestvennye opukholi = Malignant Tumours. 2019;9(3s2):704–34 (In Russ.)

116.


Review

For citations:


Shubnikova E.V., Bukatina T.M., Velts N.Yu., Kaperko D.A., Kutekhova G.V. Immune Response Checkpoint Inhibitors: New Risks of a New Class of Antitumor Agents. Safety and Risk of Pharmacotherapy. 2020;8(1):9-22. (In Russ.) https://doi.org/10.30895/2312-7821-2020-8-1-9-22

Views: 11935


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2312-7821 (Print)
ISSN 2619-1164 (Online)