Preview

Safety and Risk of Pharmacotherapy

Advanced search

Effect of Organic Anion Transporters on the Development of Nephrotoxicity in the Context of NSAIDs Use

https://doi.org/10.30895/2312-7821-2020-8-4-198-204

Abstract

Nonsteroidal anti-inflammatory drugs (NSAIDs) are widely used worldwide as pain relievers, antipyretics, and anti-inflammatory drugs. Failure to comply with the instructions for medical use of this group of drugs increases the risk of serious adverse reactions on the part of different organs and systems. From 5 to 18% of patients taking NSAIDs develop adverse reactions associated with impaired renal function. Organic anion transporter (OAT) proteins, which mediate the drug excretion with urine, have an important role to play in the NSAIDs adverse effect on kidneys. The aim of the study was to analyse and systematize scientific literature on the role of OATs in nephrotoxicity development in the context of NSAIDs use. It was revealed that adverse kidney reactions associated with NSAIDs are determined by several mechanisms, including inhibition of prostaglandin synthesis due to cyclooxeganse-1 and/or cyclooxeganse-2 blockade, and direct toxic effect on renal tubule epithelium followed by tubular necrosis due to NSAIDs interaction with OATs. Moreover, by suppressing OAT1 and OAT3, NSAIDs can not only enhance, but also reduce nephrotoxic effects of other medicines (when used together) and endogenous/exogenous toxins. Considering that NSAIDs are widely used in the treatment of various diseases (including in elderly patients and patients with concomitant renal diseases), it is still relevant to study mechanisms of adverse kidney reactions associated with drug transporters.

About the Authors

O. V. Muslimova
Scientific Centre for Expert Evaluation of Medicinal Products
Russian Federation

Olga V. Muslimova, Cand. Sci. (Med.).
8/2 Petrovsky Blvd, Moscow 127051



V. A. Evteev
Scientific Centre for Expert Evaluation of Medicinal Products
Russian Federation

Vladimir A. Evteev.
8/2 Petrovsky Blvd, Moscow 127051



I. A. Mazerkina
Scientific Centre for Expert Evaluation of Medicinal Products
Russian Federation

Irina A. Mazerkina, Cand. Sci. (Med.).
8/2 Petrovsky Blvd, Moscow 127051



References

1. Bindu S, Mazumder S, Bandyopadhyay U. Non-steroidal anti-inflammatory drugs (NSAIDs) and organ damage: a current perspective. Biochem Pharmacol. 2020;180:114147. https://doi.org/10.1016/j.bcp.2020.114147

2. Wilcox CM, Cryer B, Triadafilopoulos G. Patterns of use and public perception of over-the-counter pain relievers: focus on nonsteroidal antiinflammatory drugs. J Rheumatol. 2005;32(11):2218–24.

3. Nasonov EL. Nonsteroidal anti-inflammatory drugs in rheumatology. Lechashсhiy vrach = Attending Physician. 2006;(2) (In Russ.)

4. Vega J, Goecke H, Méndez GP, Guarda FJ. Nephrotic syndrome and acute tubular necrosis due to meloxicam use. Ren Fail. 2012;34(10):1344–7. https://doi.org/10.3109/0886022X.2012.718953

5. Swan SK, Rudy DW, Lasseter KC, Ryan CF, Buechel KL, Lambrecht LJ, et al. Effect of cyclooxygenase-2 inhibition on renal function in elderly persons receiving a low-salt diet. A randomized, controlled trial. Ann Intern Med. 2000;133(1):1–9. https://doi.org/10.7326/0003-4819-133-1-200007040-00002

6. Whelton A, Maurath CJ, Verburg KM, Geis GS. Renal safety and tolerability of celecoxib, a novel cyclooxygenase-2 inhibitor. Am J Ther. 2000;7(3):159–75. https://doi.org/10.1097/00045391-200007030-00004

7. Radi ZA, Khan KN. Cardio-renal safety of non-steroidal anti-inflammatory drugs. J Toxicol Sci. 2019;44(6):373–91. https://doi.org/10.2131/jts.44.373

8. Moore N, Pollack C, Butkerait P. Adverse drug reactions and drug-drug interactions with over-the-counter NSAIDs. Ther Clin Risk Manag. 2015;11:1061–75. https://doi.org/10.2147/TCRM.S79135

9. Pazhayattil GS, Shirali AС. Drug-induced impairment of renal function. Int J Nephrol Renovasc Dis. 2014;7:457–68. https://doi.org/10.2147/IJNRD.S39747

10. Coca SG, Singanamala S, Parikh CR. Chronic kidney disease after acute kidney injury: a systematic review and meta-analysis. Kidney Int. 2012;81(5):442–8. https://doi.org/10.1038/ki.2011.379

11. KGIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Nefrologiya i dializ = Nephrology and Dialysis. 2017;19(1) (In Russ.) https://doi.org/10.28996/1680-4422-2017-1-22-206

12. Lefebvre C, Hindié J, Zappitelli M, Platt RW, Filion KB. Non-steroidal anti-inflammatory drugs in chronic kidney disease: a systematic review of prescription practices and use in primary care. Clin Kidney J. 2019;13(1):63–71. https://doi.org/10.1093/ckj/sfz054

13. Musu M, Finco G, Antonucci R, Polati E, Sanna D, Evangelista M, et al. Acute nephrotoxicity of NSAID from the foetus to the adult. Eur Rev Med Pharmacol Sci. 2011;15(12):1461–72.

14. Chiu HY, Huang HL, Li CH, Chen HA, Yeh CL, Chiu SH, et al. Increased risk of chronic kidney disease in rheumatoid arthritis associated with cardiovascular complications-a national population-based cohort study. PLoS One. 2015;10(9):e0136508. https://doi.org/10.1371/journal.pone.0136508

15. Sriperumbuduri S, Hiremath S. The case for cautious consumption: NSAIDs in chronic kidney disease. Curr Opin Nephrol Hypertens. 2019;28(2):163–70. https://doi.org/10.1097/MNH.0000000000000473

16. Heleniak Z, Cieplińska M, Szychliński T, Rychter D, Jagodzińska K, Kłos A, et al. Nonsteroidal anti-inflammatory drug use in patients with chronic kidney disease. J Nephrol. 2017;30(6):781–6. https://doi.org/10.1007/s40620-016-0352-z

17. Wongrakpanich S, Wongrakpanich A, Melhado K, Rangaswami J. A comprehensive review of non-steroidal antiinflammatory drug use in the elderly. Aging Dis. 2018;9(1):143–50. https://doi.org/10.14336/AD.2017.0306

18. Lucas GNC, Leitão ACC, Alencar RL, Xavier RMF, Daher EDF, Junior GBS. Pathophysiological aspects of nephropathy caused by non-steroidal anti-inflammatory drugs. J Bras Nefrol. 2019;41(1):124–30. https://doi.org/10.1590/2175-8239-JBN-2018-0107

19. Curiel RV, Katz JD. Mitigating the cardiovascular and renal effects of NSAIDs. Pain Med. 2013;14(Suppl 1):S23–8. https://doi.org/10.1111/pme.12275

20. Ivanyuk A, Livio F, Biollaz J, Buclin T. Renal drug transporters and drug interactions. Clin Pharmacokinet. 2017;56(8):825–92. https://doi.org/10.1007/s40262-017-0506-8

21. Posada MM, Bacon JA, Schneck KB, Tirona RG, Kim RB, Higgins JW, et al. Prediction of renal transporter mediated drug-drug interactions for pemetrexed using physiologically based pharmacokinetic modeling. Drug Metab Dispos. 2015;43(3):325–34. https://doi.org/10.1124/dmd.114.059618

22. Atta MG, Whelton A. Acute renal papillary necrosis induced by ibuprofen. Am J Ther. 1997;4(1):55–60. https://doi.org/10.1097/00045391-199701000-00011

23. Akhund L, Quinet RJ, Ishaq S. Celecoxib-related renal papillary necrosis. Arch Intern Med. 2003;163(1):114–5. https://doi.org/10.1001/archinte.163.1.114

24. Hickey EJ, Raje RR, Reid VE, Gross SM, Ray SD. Diclofenac induced in vivo nephrotoxicity may involve oxidative stress-mediated massive genomic DNA fragmentation and apoptotic cell death. Free Radic Biol Med. 2001;31(2):139–52. https://doi.org/10.1016/s0891-5849(01)00560-3

25. Yarlagadda SG, Perazella MA. Drug-induced crystal nephropathy: an update. Expert Opin Drug Saf. 2008;7(2):147–58. https://doi.org/10.1517/14740338.7.2.147

26. Iwaki M, Shimada H, Irino Y, Take M, Egashira S. Inhibition of methotrexate uptake via organic anion transporters OAT1 and OAT3 by glucuronides of nonsteroidal anti-inflammatory drugs. Biol Pharm Bull. 2017;40(6):926–31. https://doi.org/10.1248/bpb.b16-00970

27. Uwai Y, Taniguchi R, Motohashi H, Saito H, Okuda M, Inui K. Methotrexate-loxoprofen interaction: involvement of human organic anion transporters hOAT1 and hOAT3. Drug Metab Pharmacokinet. 2004;19(5):369–74. https://doi.org/10.2133/dmpk.19.369

28. Leowattana W. Antiviral drugs and acute kidney injury (AKI). Infect Disord Drug Targets. 2019;19(4):375–82. https://doi.org/10.2174/1871526519666190617154137

29. Izzedine H, Launay-Vacher V, Deray G. Antiviral drug-induced nephrotoxicity. Am J Kidney Dis. 2005;45(5):804–17. https://doi.org/10.1053/j.ajkd.2005.02.010

30. Mulato AS, Ho ES, Cihlar T. Nonsteroidal anti-inflammatory drugs efficiently reduce the transport and cytotoxicity of adefovir mediated by the human renal organic anion transporter 1. J Pharmacol Exp Ther. 2000;295(1):10–5.

31. George B, You D, Joy MS, Aleksunes LM. Xenobiotic transporters and kidney injury. Adv Drug Deliv Rev. 2017;116:73–91. https://doi.org/10.1016/j.addr.2017.01.005

32. Babu E, Takeda M, Narikawa S, Kobayashi Y, Enomoto A, Enomoto A, Tojo A, et al. Role of human organic anion transporter 4 in the transport of ochratoxin A. Biochim Biophys Acta. 2002;1590(1–3):64–75. https://doi.org/10.1016/s0167-4889(02)00187-8

33. Baudrimont I, Murn M, Betbeder AM, Guilcher J, Creppy EE. Effect of piroxicam on the nephrotoxicity induced by ochrato­xin A in rats. Toxicology. 1995;95(1–3):147–54. https://doi.org/10.1016/0300-483x(94)02899-6

34. Obrecht-Pfumio S, Gross Y, Pfohl-Leszkowicz A, Dirheimer G. Protection by indomethacin and aspirin against genotoxicity of ochratoxin A, particularly in the urinary bladder and kidney. Arch Toxicol. 1996;70(3–4):244–8. https://doi.org/10.1007/s002040050267

35. Vanholder R, Baurmeister U, Brunet P, Cohen G, Glorieux G, Jankowski J, European Uremic Toxin Work Group. A bench to bedside view of uremic toxins. J Am Soc Nephrol. 2008;19(5):863–70. https://doi.org/10.1681/ASN.2007121377

36. Wu W, Bush K, Nigam SK. Key role for the organic anion transporters, OAT1 and OAT3, in the in vivo handling of uremic toxins and solutes. Sci Rep. 2017;7(1):4939. https://doi.org/10.1038/s41598-017-04949-2

37. Lekawanvijit S, Krum H. Cardiorenal syndrome: role of protein-bound uremictoxins. J Ren Nutr. 2015;25(2):149–54. https://doi.org/10.1053/j.jrn.2014.10.009

38. Peng YH, Sweet DH, Lin SP, Yu CP, Chao PD L, Hou YC. Green tea inhibited the elimination of nephro-cardiovascular toxins and deteriorated the renal function in rats with renal failure. Sci Rep. 2015;5:16226. https://doi.org/10.1038/srep16226

39. Lukichev BG, Podgaetskaya OYu, Karunnaya AV, Rumyantsev AS. Indoxyl sulphate at chronic kidney disease. Nefrologiya = Nephrology (Saint-Petersburg). 2014;18(1):25–32 (In Russ.)

40. Yu CP, Sweet DH, Peng YH, Hsieh YW, Chao PL, Hou YC, Lin SP. Effects of nonsteroidal anti-inflammatory drugs on the renal excretion of indoxyl sulfate, a nephro-cardiovascular toxin, in rats. Eur J Pharm Sci. 2017;101:66–70. https://doi.org/10.1016/j.ejps.2017.02.007

41. Dudareva LA, Batyushin MM. Chronical tubule-interstitial nephritis induced by administration of nonsteroid anti-inflammatory drugs: epidemiological features and possibilities of early diagnostics. Nefrologiya = Nephrology (Saint-Petersburg). 2013;17(5):22–6 (In Russ.)

42. Nast CC. Medication-induced interstitial nephritis in the 21st century. Adv Chronic Kidney Dis. 2017;24(2):72–9. https://doi.org/10.1053/j.ackd.2016.11.016

43. Hosohata K. Role of oxidative stress in drug-induced kidney injury. Int J Mol Sci. 2016;17(11):1826. https://doi.org/10.3390/ijms17111826

44. Paueksakon P, Fogo AB. Drug-induced nephropathies. Histopathology. 2017;70(1):94–108. https://doi.org/10.1111/his.13064

45. Kinoshita Y, Ishimura N, Ishihara S. Advantages and disadvantages of long-term proton pump inhibitor use. J Neurogastroenterol Motil. 2018;24(2):182–96. https://doi.org/10.5056/jnm18001

46. Simpson IJ, Marshall MR, Pilmore H, Manley P, Williams L, Thein H, Voss D. Proton pump inhibitors and acute interstitial nephritis: report and analysis of 15 cases. Nephrology (Carlton). 2006;11(5):381–5. https://doi.org/10.1111/j.1440-1797.2006.00651.x

47. Valluri A, Hetherington L, Mcquarrie E, Fleming S, Kipgen D, Geddes CC, et al. Acute tubulointerstitial nephritis in Scotland. QJM. 2015;108(7):527–32. https://doi.org/10.1093/qjmed/hcu236

48. Raghavan R, Eknoyan G. Acute interstitial nephritis—a reappraisal and update. Clin Nephrol. 2014;82(3):149–62.

49. Zhou Y, Yang Y, Wang P, Wei M, Ma Y, Wu X. Adefovir accumulation and nephrotoxicity in renal interstitium: Role of organic anion transporters of kidney. Life Sci. 2019;224:41–50. https://doi.org/10.1016/j.lfs.2019.03.042


Supplementary files

Review

For citations:


Muslimova O.V., Evteev V.A., Mazerkina I.A. Effect of Organic Anion Transporters on the Development of Nephrotoxicity in the Context of NSAIDs Use. Safety and Risk of Pharmacotherapy. 2020;8(4):198-204. (In Russ.) https://doi.org/10.30895/2312-7821-2020-8-4-198-204

Views: 1482


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2312-7821 (Print)
ISSN 2619-1164 (Online)