Лекарственно-индуцированная фибрилляция предсердий, ассоциированная с применением противоопухолевых лекарственных средств
https://doi.org/10.30895/2312-7821-2020-8-4-178-190
Резюме
Фибрилляция предсердий является серьезной нежелательной реакцией на фоне лечения противоопухолевыми лекарственными средствами. Цель работы: анализ данных научной литературы о распространенности, патофизиологических механизмах, факторах риска фибрилляции предсердий, ассоциированной с применением противоопухолевых лекарственных средств, ее профилактике и лечении. В результате проведенного исследования было выявлено, что частота встречаемости лекарственно-индуцированной фибрилляции предсердий варьирует в зависимости от конкретного противоопухолевого лекарственного средства и составляет от 1 до 86%. Ее развитие ассоциировано с применением противоопухолевых средств растительного происхождения, алкилирующих средств, ингибиторов протеинкиназ, моноклональных антител, иммунодепрессантов, противоопухолевых антибиотиков, антиметаболитов, противоопухолевых гормональных средств, антагонистов гормонов и др. Наиболее часто фибрилляция предсердий возникает на фоне применения таких препаратов, как гемцитабин (в сочетании с винорелбином), цисплатин, мелфалан, ибрутиниб, цетуксимаб, трастузумаб, алемтузумаб и доксорубицин. Показано, что патофизиологические механизмы, лежащие в основе развития фибрилляции предсердий при применении противоопухолевых препаратов, включают электрофизиологические нарушения, повреждение миокарда, воспаление, иммунный ответ, апоптоз и оксидативный стресс. Факторы риска развития лекарственно-индуцированной фибрилляции предсердий на фоне терапии противоопухолевыми лекарственными средствами в настоящее время четко не определены и продолжают изучаться. Для предотвращения развития лекарственно-индуцированной фибрилляции предсердий при ведении онкологических пациентов крайне важен мультидисциплинарный подход с участием онкогематолога и кардиолога, а также настороженность врачей в отношении возможности развития такой нежелательной реакции.
Об авторах
О. Д. ОстроумоваРоссия
Остроумова Ольга Дмитриевна, доктор медицинских наук, профессор.
ул. Баррикадная, д. 2/1, стр. 1, Москва, 125993
М. С. Черняева
Россия
Черняева Марина Сергеевна, кандидат медицинских наук, доцент.
ул. Маршала Тимошенко, д. 19, стр. 1А, Москва, 121359; Волгоградский проспект, д. 168, Москва, 109472
А. И. Кочетков
Россия
Кочетков Алексей Иванович, кандидат медицинских наук.
ул. Баррикадная, д. 2/1, стр. 1, Москва, 125993
Д. И. Бахтеева
Россия
Бахтеева Дамира Исхаковна.
ул. Баррикадная, д. 2/1, стр. 1, Москва, 125993
С. Н. Иванов
Россия
Иванов Сергей Николаевич, кандидат медицинских наук, доцент.
Волгоградский проспект, д. 168, Москва, 109472; ул. Островитянова, д. 1, Москва, 117997
Д. А. Сычев
Россия
Сычев Дмитрий Алексеевич, доктор медицинских наук, профессор, член-корреспондент РАН.
ул. Баррикадная, д. 2/1, стр. 1, Москва, 125993
Список литературы
1. Livingston RB, Carter SK. Daunomycin (NSC-82151). In: Chemotherapy Fact Sheet. Bethesda, MD: Program Analysis Branch. Chemotherapy, National Cancer Institute. 1970. P. 12–3.
2. Васюк ЮА, Школьник ЕЛ, Несветов ВВ, Школьник ЛД, Селезнева МГ. Кардиоонкология: современные аспекты диагностики сердечно-сосудистых осложнений при противоопухолевой терапии. Журнал сердечная недостаточность. 2016;17(6):383–7.
3. Ватутин НТ, Склянная ЕВ, Эль-Хатиб МА, Тарадин ГГ. Кардиоваскулярные осложнения противоопухолевой терапии: определение, этиология, эпидемиология, патогенез и классификация (часть I). Российский онкологический журнал. 2017;22(6):345–50. https://doi.org/10.18821/1028-9984-2017-22-6-345-350
4. Чазова ИЕ, Тюляндин СА, Виценя МВ, Овчинников АГ, Полтавская МГ, Гиляров МЮ и др. Руководство по диагностике, профилактике и лечению сердечно-сосудистых осложнений противоопухолевой терапии. Часть I. Системные гипертензии. 2017;14(3):6–20.
5. Чазова ИЕ, Тюляндин СА, Виценя МВ, Полтавская МГ, Гиляров МЮ, Мартынюк ТВ и др. Руководство по диагностике, профилактике и лечению сердечно-сосудистых осложнений противоопухолевой терапии. Части II–V. Системные гипертензии. 2017;14(4):6–19. https://doi.org/10.26442/2075-082X_14.4.6-19
6. Гендлин ГЕ, Емелина ЕИ, Никитин ИГ, Васюк ЮА. Современный взгляд на кардиотоксичность химиотерапии онкологических заболеваний, включающей антрациклиновые антибиотики. Российский кардиологический журнал. 2017;(3):145–54. https://doi.org/10.15829/1560-4071-2017-3-145-154
7. Бокерия ОЛ, Жукова ЛГ. Кардиоонкология (обзор современной литературы и собственный опыт). Бюллетень НЦССХ им. А.Н. Бакулева РАМН. Сердечно-сосудистые заболевания. 2017;18(S6):195.
8. Яндиева РА, Сарибекян ЭК, Мамедов МН. Кардиотоксичность при лечении онкологических заболеваний. Международный журнал сердца и сосудистых заболеваний. 2018;6(17):3–11.
9. Guglin M, Aljayeh M, Saiyad S, Ali R, Curtis AB. Introducing a new entity: chemotherapy-induced arrhythmia. EP Europace. 2009;11(12):1579–86. https://doi.org/10.1093/europace/eup300
10. Yang X, Li X, Yuan M, Tian C, Yang Y, Wang X, et al. Anticancer therapy-induced atrial fibrillation: electrophysiology and related mechanisms. Front Pharmacol. 2018;9:1058. https://doi.org/10.3389/fphar.2018.01058
11. Buza V, Rajagopalan B, Curtis AB. Cancer treatment-induced arrhythmias: focus on chemotherapy and targeted therapies. Circ Arrhythm Electrophysiol. 2017;10(8):e005443. https://doi.org/10.1161/CIRCEP.117.005443
12. López-Fernández T, Martín-García A, Roldán Rabadán I, Mitroi C, Mazón Ramos P, Díez-Villanueva P, et al. Atrial fibrillation in active cancer patients: expert position paper and recommendations. Rev Esp Cardiol (Engl ed). 2019;72(9):749–59. https://doi.org/10.1016/j.rec.2019.03.019
13. Лямина НП, Погонченкова ИВ, Лямина СВ. Диагностика кардиотоксических нарушений ритма сердца и проводимости у онкологических больных с применением телеметрической электрокардиографии. CardioСоматика. 2020;11(2):14–8.
14. Ostenfeld EB, Erichsen R, Pedersen L, Farkas DK, Weiss NS, Sørensen HT. Atrial fibrillation as a marker of occult cancer. PLoS One. 2014;9(8):e102861. https://doi.org/10.1371/journal.pone.0102861
15. Zhang S, Liang F, Tannock I. Use and misuse of common terminology criteria for adverse events in cancer clinical trials. BMC Cancer. 2016;16:392. https://doi.org/10.1186/s12885-016-2408-9
16. Bracci L, Schiavoni G, Sistigu A, Belardelli F. Immune-based mechanisms of cytotoxic chemotherapy: implications for the design of novel and rationale-based combined treatments against cancer. Cell Death Differ. 2014;21(1):15–25. https://doi.org/10.1038/cdd.2013.67
17. Farmakis D, Parissis J, Filippatos G. Insights into onco-cardiology: atrial fibrillation in cancer. J Am Coll Cardiol. 2014;63(10):945–53. https://doi.org/10.1016/j.jacc.2013.11.026
18. Nattel S, Burstein B, Dobrev D. Atrial remodeling and atrial fibrillation: mechanisms and implications. Circ Arrhythm Electrophysiol. 2008;1(1):62–73. https://doi.org/10.1161/CIRCEP.107.754564
19. Hove-Madsen L, Llach A, Bayes-Genís A, Roura S, Rodriguez Font E, Arís A, Cinca J. Atrial fibrillation is associated with increased spontaneous calcium release from the sarcoplasmic reticulum in human atrial myocytes. Circulation. 2004;110(11):1358–63. https://doi.org/10.1161/01.CIR.0000141296.59876.87
20. Vest JA, Wehrens XH, Reiken SR, Lehnart SE, Dobrev D, Chandra P, et al. Defective cardiac ryanodine receptor regulation during atrial fibrillation. Circulation. 2005;111(16):2025–32. https://doi.org/10.1161/01.CIR.0000162461.67140.4C
21. Chelu MG, Sarma S, Sood S, Wang S, van Oort RJ, Skapura DG, et al. Calmodulin kinase II-mediated sarcoplasmic reticulum Ca2+ leak promotes atrial fibrillation in mice. J Clin Invest. 2009;119(7):1940–51. https://doi.org/10.1172/JCI37059
22. Neef S, Dybkova N, Sossalla S, Ort KR, Fluschnik N, Neumann K, et al. CaMKII-dependent diastolic SR Ca2+ leak and elevated diastolic Ca2+ levels in right atrial myocardium of patients with atrial fibrillation. Circ Res. 2010;106(6):1134–44. https://doi.org/10.1161/CIRCRESAHA.109.203836
23. Dobrev D, Voigt N, Wehrens XH. The ryanodine receptor channel as a molecular motif in atrial fibrillation: pathophysiological and therapeutic implications. Cardiovasc Res. 2011;89(4):734–43. https://doi.org/10.1093/cvr/cvq324
24. Voigt N, Heijman J, Wang Q, Chiang DY, Li N, Karck M, et al. Cellular and molecular mechanisms of atrial arrhythmogenesis in patients with paroxysmal atrial fibrillation. Circulation. 2014;129(2):145–56. https://doi.org/10.1161/CIRCULATIONAHA.113.006641
25. Voigt N, Li N, Wang Q, Wang W, Trafford AW, Abu-Taha I, et al. Enhanced sarcoplasmic reticulum Ca2+ leak and increased Na+-Ca2+ exchanger function underlie delayed afterdepolarizations in patients with chronic atrial fibrillation. Circulation. 2012;125(17):2059–70. https://doi.org/10.1161/CIRCULATIONAHA.111.067306
26. Xing Y, Gao Y, Chen J, Zhu H, Wu A, Yang Q, et al. Wenxin-Keli regulates the calcium/calmodulin-dependent protein kinase II signal transduction pathway and inhibits cardiac arrhythmia in rats with myocardial infarction. Evid Based Complement Alternat Med. 2013;2013:464508. https://doi.org/10.1155/2013/464508
27. Yang X, Chen Y, Li Y, Ren X, Xing Y, Shang H. Effects of Wenxin Keli on cardiac hypertrophy and arrhythmia via regulation of the calcium/calmodulin dependent kinase II signaling pathway. Biomed Res Int. 2017;2017:1569235. https://doi.org/10.1155/2017/1569235
28. Sag CM, Köhler AC, Anderson ME, Backs J, Maier LS. CaMKII-dependent SR Ca leak contributes to doxorubicin-induced impaired Ca handling in isolated cardiac myocytes. J Mol Cell Cardiol. 2011;51(5):749–59. https://doi.org/10.1016/j.yjmcc.2011.07.016
29. Давтян КВ, Калемберг АА, Царева ЕН, Благова ОВ, Харлап МС. Роль воспалительной теории в патогенезе фибрилляции предсердий. Российский кардиологический журнал. 2019;24(7):110–4. https://doi.org/10.15829/1560-4071-2019-7-110-114
30. Gedikli O, Dogan A, Altuntas I, Altinbas A, Ozaydin M, Akturk O, Acar G. Inflammatory markers according to types of atrial fibrillation. Int J Cardiol. 2007;120(2):193–7. https://doi.org/10.1016/j.ijcard.2006.09.015
31. Conway DS, Buggins P, Hughes E, Lip GY. Prognostic significance of raised plasma levels of interleukin-6 and C-reactive protein in atrial fibrillation. Am Heart J. 2004;148(3):462–6. https://doi.org/10.1016/j.ahj.2004.01.026
32. Guzzetti S, Costantino G, Fundarò C. Systemic inflammation, atrial fibrillation, and cancer. Circulation. 2002;106(9):e40. https://doi.org/10.1161/01.cir.0000028399.42411.13
33. Albini A, Pennesi G, Donatelli F, Cammarota R, De Flora S, Noonan DM. Cardiotoxicity of anticancer drugs: the need for cardio-oncology and cardio-oncological prevention. J Natl Cancer Inst. 2010;102(1):14–25. https://doi.org/10.1093/jnci/djp440
34. Liu Y, Tan D, Shi L, Liu X, Zhang Y, Tong C, et al. Blueberry anthocyanins-enriched extracts attenuate cyclophosphamide-induced cardiac injury. PLoS ONE. 2015;10(7):e0127813. https://doi.org/10.1371/journal.pone.0127813
35. Zhang J, Cui X, Yan Y, Li M, Yang Y, Wang J, et al. Research progress of cardioprotective agents for prevention of anthracycline cardiotoxicity. Am J Transl Res. 2016;8(7):2862–75.
36. Yang X, Li Y, Li Y, Ren X, Zhang X, Hu D, et al. Oxidative stress-mediated atherosclerosis: mechanisms and therapies. Front Physiol. 2017;8:600. https://doi.org/10.3389/fphys.2017.00600
37. O’Neal WT, Lakoski SG, Qureshi W, Judd SE, Howard G, Howard VJ, et al. Relation between cancer and atrial fibrillation (from the REasons for Geographic And Racial Differences in Stroke Study). Am J Cardiol. 2015;115(8):1090–4. https://doi.org/10.1016/j.amjcard.2015.01.540
38. Samman Tahhan A, Sandesara PB, Hayek SS, Alkhoder A, Chivukula K, Hammadah M, et al. Association between oxidative stress and atrial fibrillation. Heart Rhythm. 2017;14(12):1849–55. https://doi.org/10.1016/j.hrthm.2017.07.028
39. Beck MA. Selenium and host defence towards viruses. Proc Nutr Soc. 1999;58(3):707–11. https://doi.org/10.1017/S0029665199000920
40. Ozaki M, Deshpande SS, Angkeow P, Bellan J, Lowenstein CJ, Dinauer MC, et al. Inhibition of the Rac1 GTPase protects against nonlethal ischemia/reperfusion-induced necrosis and apoptosis in vivo. FASEB J. 2000;14(2):418–29. https://doi.org/10.1096/fasebj.14.2.418
41. Keefe DL. Anthracycline-induced cardiomyopathy. Semin Oncol. 2001;28(4 Suppl 12):2–7.
42. Gen W, Tani M, Takeshita J, Ebihara Y, Tamaki K. Mechanisms of Ca2+ overload induced by extracellular H2O2 in quiescent isolated rat cardiomyocytes. Basic Res Cardiol. 2001;96(6):623–9. https://doi.org/10.1007/s003950170014
43. Qu YC, Du YM, Wu SL, Chen QX, Wu HL, Zhou SF. Activated nuclear factor-κB and increased tumor necrosis factor-α in atrial tissue of atrial fibrillation. Scand Cardiovasc J. 2009;43(5):292–7. https://doi.org/10.1080/14017430802651803
44. Zhang Y, Wang YT, Shan ZL, Guo HY, Guan Y, Yuan HT. Role of inflammation in the initiation and maintenance of atrial fibrillation and the protective effect of atorvastatin in a goat model of aseptic pericarditis. Mol Med Rep. 2015;11(4):2615–23. https://doi.org/10.3892/mmr.2014.3116
45. Kamineni P, Prakasa K, Hasan SP, Akula R, Dawkins F. Cardiotoxicities of paclitaxel in African Americans. J Natl Med Assoc. 2003;95(10):977–81.
46. Lombardi D, Crivellari D, Scuderi C, Magri MD, Spazzapan S, Sorio R, et al. Long-term, weekly one-hour infusion of paclitaxel in patients with metastatic breast cancer: a phase II monoinstitutional study. Tumori. 2004;90(3):285–8.
47. Arbuck SG, Strauss H, Rowinsky E, Christian M, Suffness M, Adams J, et al. A reassessment of cardiac toxicity associated with Taxol. J Natl Cancer Inst Monogr. 1993;(15):117–30.
48. Brouty-Boye D, Kolonias D, Lampidis TJ. Antiproliferative activity of taxol on human tumor and normal breast cells vs. effects on cardiac cells. Int J Cancer. 1995;60(4):571–5. http://doi.org/10.1002/ijc.2910600424
49. Alloatti G, Penna C, Gallo MP, Levi RC, Bombardelli E, Appendino G. Differential effects of paclitaxel and derivatives on guinea pig isolated heart and papillary muscle. J Pharmacol Exp Ther. 1998;284(2):561–7.
50. Gridelli C, Cigolari S, Gallo C, Manzione L, Ianniello GP, Frontini L, et al. Activity and toxicity of gemcitabine and gemcitabine + vinorelbine in advanced non-small-cell lung cancer elderly patients: phase II data from the Multicenter Italian Lung Cancer in the Elderly Study (MILES) randomized trial. Lung Cancer. 2001;31(2–3):277–84. https://doi.org/10.1016/S0169-5002(00)00194-X
51. Palma M, Mancuso A, Grifalchi F, Lugini A, Pizzardi N, Cortesi E. Atrial fibrillation during adjuvant chemotherapy with docetaxel: a case report. Tumori. 2002;88(6):527–9.
52. Eskilsson J, Albertsson M, Mercke C. Adverse cardiac effects during induction chemotherapy treatment with cis-platin and 5-fluorouracil. Radiother Oncol. 1988;13(1):41–6. https://doi.org/10.1016/0167-8140(88)90296-4
53. Menard O, Martinet Y, Lamy P. Cisplatin-induced atrial fibrillation. J Clin Oncol. 1991;9(1):192–3. https://doi.org/10.1200/JCO.1991.9.1.192
54. Tomkowski WZ, Wiśniewska J, Szturmowicz M, Kuca P, Burakowski J, Kober J, Fijałkowska A. Evaluation of intrapericardial cisplatin administration in cases with recurrent malignant pericardial effusion and cardiac tamponade. Support Care Cancer. 2004;12(1):53–7. https://doi.org/10.1007/s00520-003-0533-x
55. Tilleman TR, Richards WG, Zellos L, Johnson BE, Jaklitsch MT, Mueller J, et al. Extrapleural pneumonectomy followed by intracavitary intraoperative hyperthermic cisplatin with pharmacologic cytoprotection for treatment of malignant pleural mesothelioma: a phase II prospective study. J Thorac Cardiovasc Surg. 2009;138(2):405–11. https://doi.org/10.1016/j.jtcvs.2009.02.046
56. Zellos L, Richards WG, Capalbo L, Jaklitsch MT, Chirieac LR, Johnson BE, et al. A phase I study of extrapleural pneumonectomy and intracavitary intraoperative hyperthermic cisplatin with amifostine cytoprotection for malignant pleural mesothelioma. J Thorac Cardiovasc Surg. 2009;137(2):453–8. https://doi.org/10.1016/j.jtcvs.2008.07.055
57. Richards WG, Zellos L, Bueno R, Jaklitsch MT, Jänne PA, Chirieac LR, et al. Phase I to II study of pleurectomy/decortication and intraoperative intracavitary hyperthermic cisplatin lavage for mesothelioma. J Clin Oncol. 2006;24(10):1561–7. https://doi.org/10.1200/JCO.2005.04.6813
58. Ma H, Jones KR, Guo R, Xu P, Shen Y, Ren J. Cisplatin compromises myocardial contractile function and mitochondrial ultrastructure: role of endoplasmic reticulum stress. Clin Exp Pharmacol Physiol. 2010;37(4):460–5. http://doi.org/10.1111/j.1440-1681.2009.05323.x
59. Pfister DG, Su YB, Kraus DH, Wolden SL, Lis E, Aliff TB, et al. Concurrent cetuximab, cisplatin, and concomitant boost radiotherapy for locoregionally advanced, squamous cell head and neck cancer: a pilot phase II study of a new combined-modality paradigm. J Clin Oncol. 2006;24(7):1072–8. https://doi.org/10.1200/JCO.2004.00.1792
60. Honigberg LA, Smith AM, Sirisawad M, Verner E, Loury D, Chang B, et al. The Bruton tyrosine kinase inhibitor PCI-32765 blocks B-cell activation and is efficacious in models of autoimmune disease and B-cell malignancy. Proc Natl Acad Sci USA. 2010;107(29):13075–80. https://doi.org/10.1073/pnas.1004594107
61. Olivieri A, Corvatta L, Montanari M, Brunori M, Offidani M, Ferretti GF, et al. Paroxysmal atrial fibrillation after high-dose melphalan in five patients autotransplanted with blood progenitor cells. Bone Marrow Transplant. 1998;21(10):1049–53. https://doi.org/10.1038/sj.bmt.1701217
62. Moreau P, Milpied N, Mahé B, Juge-Morineau N, Rapp MJ, Bataille R, Harousseau JL. Melphalan 220 mg/m2 followed by peripheral blood stem cell transplantation in 27 patients with advanced multiple myeloma. Bone Marrow Transplant. 1999;23(10):1003–6. https://doi.org/10.1038/sj.bmt.1701763
63. Phillips GL, Meisenberg B, Reece DE, Adams VR, Badros A, Brunner J, et al. Amifostine and autologous hematopoietic stem cell support of escalating-dose melphalan: a phase I study. Biol Blood Marrow Transplant. 2004;10(7):473–83. https://doi.org/10.1016/j.bbmt.2004.03.001
64. Ifran A, Kaptan K, Beyan C. High-dose cyclophosphamide and MESNA infusion can cause acute atrial fibrillation. Am J Hematol. 2005;80(3):247. http://doi.org/10.1002/ajh.20441
65. Illiano A, Barletta E, De Marino V, Battiloro C, Barzelloni M, Scognamiglio F, et al. New triplet chemotherapy combination with carboplatin, paclitaxel and gemcitabine plus amifostine support in advanced non small cell lung cancer: a phase II study. Anticancer Res. 2000;20(5C):3999–4003.
66. Quezado ZM, Wilson WH, Cunnion RE, Parker MM, Reda D, Bryant G, Ognibene FP. High-dose ifosfamide is associated with severe, reversible cardiac dysfunction. Ann Intern Med. 1993;118(1):31–6. https://doi.org/10.7326/0003-4819-118-1-199301010-00006
67. Leong DP, Caron F, Hillis C, Duan A, Healey JS, Fraser G, Siegal D. The risk of atrial fibrillation with ibrutinib use: a systematic review and meta-analysis. Blood. 2016;128(1):138–40. http://doi.org/10.1182/blood-2016-05-712828
68. Heeringa J, van der Kuip DA, Hofman A, Kors JA, van Herpen G, Stricker BH, et al. Prevalence, incidence and lifetime risk of atrial fibrillation: the Rotterdam study. Eur Heart J. 2006;27(8):949–53. https://doi.org/10.1093/eurheartj/ehi825
69. Psaty BM, Manolio TA, Kuller LH, Kronmal RA, Cushman M, Fried LP, et al. Incidence of and risk factors for atrial fibrillation in older adults. Circulation. 1997;96(7):2455–61. https://doi.org/10.1161/01.cir.96.7.2455
70. Yun S, Vincelette ND, Acharya U, Abraham I. Risk of atrial fibrillation and bleeding diathesis associated with ibrutinib treatment: a systematic review and pooled analysis of four randomized controlled trials. Clin Lymphoma Myeloma Leuk. 2017;17(1):31–37.e13. https://doi.org/10.1016/j.clml.2016.09.010
71. Caldeira D, Alves D, Costa J, Ferreira JJ, Pinto FJ. Ibrutinib increases the risk of hypertension and atrial fibrillation: systematic review and meta-analysis. PLoS One. 2019;14(2):e0211228. https://doi.org/10.1371/journal.pone.0211228
72. Емелина ЕИ, Гендлин ГЕ, Никитин ИГ, Дмитриева ЕА, Никитин ЕА, Птушкин ВВ. Нарушения ритма и проводимости у пациентов, получающих лечение ибрутинибом. Клиническая онкогематология. 2019;12(2):220–30. https://doi.org/10.21320/2500-2139-2019-12-2-220-230
73. Shanafelt TD, Parikh SA, Noseworthy PA, Goede V, Chaffee KG, Bahlo J, et al. Atrial fibrillation in patients with chronic lymphocytic leukemia (CLL). Leuk Lymphoma. 2017;58(7):1630–9. https://doi.org/10.1080/10428194.2016.1257795
74. Pretorius L, Du XJ, Woodcock EA, Kiriazis H, Lin RC, Marasco S, et al. Reduced phosphoinositide 3-kinase (p110α) activation increases the susceptibility to atrial fibrillation. Am J Pathol. 2009;175(3):998–1009. https://doi.org/10.2353/ajpath.2009.090126
75. McMullen JR, Boey EJ, Ooi JY, Seymour JF, Keating MJ, Tam CS. Ibrutinib increases the risk of atrial fibrillation, potentially through inhibition of cardiac PI3K-Akt signaling. Blood. 2014;124(25):3829–30. https://doi.org/10.1182/blood-2014-10-604272
76. Yang T, Moleslehi J, Roden DM. Proarrhythmic effects of ibrutinib, a clinically approved inhibitor of Bruton’S tyrosine kinase (BTK) used in cancer therapy. Circulation. 2015;132(Suppl 3):A14587. http://doi.org/10.1161/circ.132.suppl_3.14587
77. Mego M, Reckova M, Obertova J, Sycova-Mila Z, Brozmanova K, Mardiak J. Increased cardiotoxicity of sorafenib in sunitinib-pretreated patients with metastatic renal cell carcinoma. Ann Oncol. 2007;18(11):1906–7. https://doi.org/10.1093/annonc/mdm489
78. Doherty KR, Wappel RL, Talbert DR, Trusk PB, Moran DM, Kramer JW, et al. Multi-parameter in vitro toxicity testing of crizotinib, sunitinib, erlotinib, and nilotinib in human cardiomyocytes. Toxicol Appl Pharmacol. 2013;272(1):245–55. https://doi.org/10.1016/j.taap.2013.04.027
79. Will Y, Dykens JA, Nadanaciva S, Hirakawa B, Jamieson J, Marroquin LD, et al. Effect of the multitargeted tyrosine kinase inhibitors imatinib, dasatinib, sunitinib, and sorafenib on mitochondrial function in isolated rat heart mitochondria and H9c2 cells. Toxicol Sci. 2008;106(1):153–61. https://doi.org/10.1093/toxsci/kfn157
80. Duran JM, Makarewich CA, Trappanese D, Gross P, Husain S, Dunn J, et al. Sorafenib cardiotoxicity increases mortality after myocardial infarction. Circ Res. 2014;114(11):1700–12. https://doi.org/10.1161/CIRCRESAHA.114.303200
81. Kawabata M, Umemoto N, Shimada Y, Nishimura Y, Zhang B, Kuroyanagi J, et al. Downregulation of stanniocalcin 1 is responsible for sorafenib-induced cardiotoxicity. Toxicol Sci. 2015;143(2):374–84. https://doi.org/10.1093/toxsci/kfu235
82. Jones AL, Barlow M, Barrett-Lee PJ, Canney PA, Gilmour IM, Robb SD, et al. Management of cardiac health in trastuzumab-treated patients with breast cancer: updated United Kingdom National Cancer Research Institute recommendations for monitoring. Br J Cancer. 2009;100(5):684–92. https://doi.org/10.1038/sj.bjc.6604909
83. ElZarrad MK, Mukhopadhyay P, Mohan N, Hao E, Dokmanovic M, Hirsch DS, et al. Trastuzumab alters the expression of genes essential for cardiac function and induces ultrastructural changes of cardiomyocytes in mice. PLoS One. 2013;8(11):e79543. http://doi.org/10.1371/journal.pone.0079543
84. Lenihan DJ, Alencar AJ, Yang D, Kurzrock R, Keating MJ, Duvic M. Cardiac toxicity of alemtuzumab in patients with mycosis fungoides/Sézary syndrome. Blood. 2004;104(3):655–8. https://doi.org/10.1182/blood-2003-07-2345
85. Foran JM, Rohatiner AZ, Cunningham D, Popescu RA, Solal-Celigny P, Ghielmini M, et al. European phase II study of rituximab (chimeric anti-CD20 monoclonal antibody) for patients with newly diagnosed mantle-cell lymphoma and previously treated mantle-cell lymphoma, immunocytoma, and small B-cell lymphocytic lymphoma. J Clin Oncol. 2000;18(2):317–24. https://doi.org/10.1200/JCO.2000.18.2.317
86. Kilickap S, Barista I, Akgul E, Aytemir K, Aksoy S, Tekuzman G. Early and late arrhythmogenic effects of doxorubicin. South Med J. 2007;100(3):262–5. http://doi.org/10.1097/01.smj.0000257382.89910.fe
87. Numico G, Castiglione F, Granetto C, Garrone O, Mariani G, Costanzo GD, et al. Single-agent pegylated liposomal doxorubicin (Caelix®) in chemotherapy pretreated non-small cell lung cancer patients: a pilot trial. Lung Cancer. 2002;35(1):59–64. https://doi.org/10.1016/S0169-5002(01)00269-0
88. Zhang H, Zhang A, Guo C, Shi C, Zhang Y, Liu Q, et al. S-diclofenac protects against doxorubicin-induced cardiomyopathy in mice via ameliorating cardiac gap junction remodeling. PLoS One. 2011;6(10):e26441. https://doi.org/10.1371/journal.pone.0026441
89. Varga ZV, Ferdinandy P, Liaudet L, Pacher P. Drug-induced mitochondrial dysfunction and cardiotoxicity. Am J Physiol Heart Circ Physiol. 2015;309(9):H1453–67. https://doi.org/10.1152/ajpheart.00554.2015
90. Kluza J, Marchetti P, Gallego MA, Lancel S, Fournier C, Loyens A, et al. Mitochondrial proliferation during apoptosis induced by anticancer agents: effects of doxorubicin and mitoxantrone on cancer and cardiac cells. Oncogene. 2004;23(42):7018–30. https://doi.org/10.1038/sj.onc.1207936
91. Lai HC, Yeh YC, Wang LC, Ting CT, Lee WL, Lee HW, et al. Propofol ameliorates doxorubicin-induced oxidative stress and cellular apoptosis in rat cardiomyocytes. Toxicol Appl Pharmacol. 2011;257(3):437–48. https://doi.org/10.1016/j.taap.2011.10.001
92. Arai M, Tomaru K, Takizawa T, Sekiguchi K, Yokoyama T, Suzuki T, Nagai R. Sarcoplasmic reticulum genes are selectively down-regulated in cardiomyopathy produced by doxorubicin in rabbits. J Mol Cell Cardiol. 1998;30(2):243–54. https://doi.org/10.1006/jmcc.1997.0588
93. Aziz SA, Tramboo NA, Mohi-ud-Din K, Iqbal K, Jalal S, Ahmad M. Supraventricular arrhythmia: a complication of 5-fluorouracil therapy. Clin Oncol (R Coll Radiol). 1998;10(6):377–8. https://doi.org/10.1016/S0936-6555(98)80033-2
94. Meydan N, Kundak I, Yavuzsen T, Oztop I, Barutca S, Yilmaz U, Alakavuklar MN. Cardiotoxicity of de Gramont’s regimen: incidence, clinical characteristics and long-term follow-up. Jpn J Clin Oncol. 2005;35(5):265–70. https://doi.org/10.1093/jjco/hyi071
95. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 1987;235(4785):177–82. https://doi.org/10.1126/science.3798106
96. Keefe DL, Roistacher N, Pierri MK. Clinical cardiotoxicity of 5-fluorouracil. J Clin Pharmacol. 1993;33(11):1060–70. https://doi.org/10.1002/j.1552-4604.1993.tb01943.x
97. Hrovatin E, Viel E, Lestuzzi C, Tartuferi L, Zardo F, Brieda M, et al. Severe ventricular dysrhythmias and silent ischemia during infusion of the antimetabolite 5-fluorouracil and cis-platin. J Cardiovasc Med (Hagerstown). 2006;7(8):637–40. https://doi.org/10.2459/01.JCM.0000237914.12915.dd
98. Veronesi U, Maisonneuve P, Rotmensz N, Bonanni B, Boyle P, Viale G, et al. Tamoxifen for the prevention of breast cancer: late results of the Italian Randomized Tamoxifen Prevention Trial among women with hysterectomy. J Natl Cancer Inst. 2007;99(9):727–37. https://doi.org/10.1093/jnci/djk154
99. Pérez Persona E, Mesa MG, García Sánchez PJ, González Rodríguez AP. Lenalidomide treatment for patients with multiple myeloma: diagnosis and management of most frequent adverse events. Adv Ther. 2011;28 Suppl 1:11–6. https://doi.org/10.1007/s12325-010-0102-x
100. Zingler VC, Näbauer M, Jahn K, Groβ A, Hohlfeld R, Brandt T, Strupp M. Assessment of potential cardiotoxic side effects of mitoxantrone in patients with multiple sclerosis. Europ Neurol. 2005;54(1):28–33. https://doi.org/10.1159/000087242
101. van der Hooft CS, Heeringa J, Brusselle GG, Hofman A, Witteman JC, Kingma JH, et al. Corticosteroids and the risk of atrial fibrillation. Arch Intern Med. 2006;166(9):1016–20. https://doi.org/10.1001/archinte.166.9.1016
102. Dutcher JP, Fisher RI, Weiss G, Aronson F, Margolin K, Louie A, et al. Outpatient subcutaneous interleukin-2 and interferon-alpha for metastatic renal cell cancer: five-year follow-up of the Cytokine Working Group Study. Cancer J Sci Am. 1997;3(3):157–62.
103. Margolin KA, Rayner AA, Hawkins MJ, Atkins MB, Dutcher JP, Fisher RI, et al. Interleukin-2 and lymphokine-activated killer cell therapy of solid tumors: analysis of toxicity and management guidelines. J Clin Oncol. 1989;7(4):486–98. https://doi.org/10.1200/JCO.1989.7.4.486
104. Lee RE, Lotze MT, Skibber JM, Tucker E, Bonow RO, Ognibene FP, et al. Cardiorespiratory effects of immunotherapy with interleukin-2. J Clin Oncol. 1989;7(1):7–20. https://doi.org/10.1200/JCO.1989.7.1.7
105. Hak Ł, Myśliwska J, Wieckiewicz J, Szyndler K, Siebert J, Rogowski J. Interleukin-2 as a predictor of early postoperative atrial fibrillation after cardiopulmonary bypass graft (CABG). J Interferon Cytokine Res. 2009;29(6):327–32. https://doi.org/10.1089/jir.2008.0082.2906
106. Lancellotti P, Suter TM, López-Fernández T, Galderisi M, Lyon AR, Van der Meer P, et al. Cardio-Oncology Services: rationale, organization, and implementation. Eur Heart J. 2019;40(22):1756–63. https://doi.org/10.1093/eurheartj/ehy453
107. Tisdale JE, Miller DA, eds. Drug-induced diseases: prevention, detection, and management. 3rd ed. Bethesda: American Society of Health-System Pharmacists; 2018. Р. 581–8.
Дополнительные файлы
Рецензия
Для цитирования:
Остроумова О.Д., Черняева М.С., Кочетков А.И., Бахтеева Д.И., Иванов С.Н., Сычев Д.А. Лекарственно-индуцированная фибрилляция предсердий, ассоциированная с применением противоопухолевых лекарственных средств. Безопасность и риск фармакотерапии. 2020;8(4):178-190. https://doi.org/10.30895/2312-7821-2020-8-4-178-190
For citation:
Ostroumova O.D., Chernyaeva M.S., Kochetkov A.I., Bakhteeva D.I., Ivanov S.N., Sychev D.A. Atrial Fibrillation Associated with Anticancer Drugs. Safety and Risk of Pharmacotherapy. 2020;8(4):178-190. (In Russ.) https://doi.org/10.30895/2312-7821-2020-8-4-178-190