Genetic Risk Factors for Adverse Drug Reactions
https://doi.org/10.30895/2312-7821-2022-10-1-48-64
Abstract
The use of medicines may in some cases be associated with the development of drug-induced diseases (DIDs) аnd other adverse drug reactions (ADRs), which leads to an increase in morbidity/mortality rates, and/or symptoms forcing a patient to seek medical attention or resulting in hospitalisation. ADRs may develop due to changes in a patient’s genotype, which entail an inadequate pharmacological response. The aim of the study was to analyse and summarise literature data on genetic risk factors that cause DIDs аnd other ADRs. It was shown that the polymorphism of genes encoding enzymes of drug metabolism (CYP, UGT, NAT, TPMT, EPHX, GST, etc.) or carriers (transporters) of drugs (P-gp, BCRP, MRP, OATP, OCT, etc.) can change the pharmacokinetics of drugs, affecting their activity. Polymorphism of RYR1, CACNA1S, MT-RNR1, VKORC1, and other genes encoding receptors targeted by drugs, and human leukocyte antigen (HLA) gene, may affect drug pharmacodynamics by modifying drug targets or changing the sensitivity of biological pathways to pharmacological effects of medicines. Changes in drug pharmacokinetics and pharmacodynamics may cause DIDs аnd other ADRs. The use of pharmacogenetic tests will allow a personalised approach to patients’ treatment and prevention or timely detection of potential ADRs during therapy. Before prescribing some medicines, clinicians should use recommendations on their dosing based on pharmacogenetic tests, which are posted on the official websites of Pharmacogenomics Research Network (PGRN), Pharmacogenomics Knowledgebase (PharmGKB), and Clinical Pharmacogenetics Implementation Consortium (CPIC). The results of ongoing clinical studies on the effect of gene polymorphism on drug safety will soon allow for higher personalisation of the choice of pharmacotherapy and prevention of many ADRs, including DIDs.
About the Authors
D. A. SychevRussian Federation
Dmitry A. Sychev, Corr. Member of the RAS, Dr. Sci. (Med.), Professor
2/1/1 Barrikadnaya St., Moscow 125993
M. S. Chernyaeva
Russian Federation
Marina S. Chernyaeva, Cand. Sci. (Med.)
19, bld. 1A Marshal Timoshenko St., Moscow 121359
O. D. Ostroumova
Russian Federation
Olga D. Ostroumova, Dr. Sci. (Med.), Professor
2/1/1 Barrikadnaya St., Moscow 125993
8/2 Trubetskaya St., Moscow 2119991
References
1. Tisdale JE, Miller DA, eds. Drug Induced Diseases: Prevention, Detection, and Management. 3rd ed. Bethesda, Md.: American Society of Health-System Pharmacists; 2018.
2. Daly AK. Pharmacogenomics of adverse drug reactions. Genome Med. 2013;5(1):5. https://doi.org/10.1186/gm409
3. Uetrecht J, Naisbitt DJ. Idiosyncratic adverse drug reactions: current concepts. Pharmacol Rev. 2013;65(2):779–808. https://doi.org/10.1124/pr.113.007450
4. Ma Q, Lu AY. Pharmacogenetics, pharmacogenomics, and individualized medicine. Pharmacol Rev. 2011;63(2):437–59. https://doi.org/10.1124/pr.110.003533
5. Belle DJ, Singh H. Genetic factors in drug metabolism. Am Fam Physician. 2008; 77(11):1553–60. PMID: 18581835
6. Sim SC, Kacevska M, Ingelman-Sundberg M. Pharmacogenomics of drug-metabolizing enzymes: a recent update on clinical implications and endogenous effects. Pharmacogenomics J. 2013;13(1):1–11. https://doi.org/10.1038/tpj.2012.45
7. Kukes VG, ed. Clinical pharmacogenetics. Moscow: GEOTAR-Media; 2007 (In Russ.)
8. Johnson JA, Caudle KE, Gong L, Whirl-Carrillo M, Stein CM, Scott SA, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for pharmacogenetics – guided warfarin dosing: 2017 update. Clin Pharmacol Ther. 2017;102(3):397–404. https://doi.org/10.1002/cpt.668
9. Theken KN, Lee CR, Gong L, Caudle KE, Formea CM, Gaedigk A, et al. Clinical Pharmacogenetics Implementation Consortium Guideline (CPIC) for CYP2C9 and nonsteroidal anti-inflammatory drugs. Clin Pharmacol Ther. 2020;108(2):191–200. https://doi.org/10.1002/cpt.1830
10. Desta Z, Gammal RS, Gong L, Whirl-Carrillo M, Gaur AH, Sukasem C, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for CYP2B6 and efavirenz-containing antiretroviral therapy. Clin Pharmacol Ther. 2019;106(4):726–33. https://doi.org/10.1002/cpt.1477
11. Sibbing D, Koch W, Gebhard D, Schuster T, Braun S, Stegherr J, et al. Cytochrome 2C19*17 allelic variant, platelet aggregation, bleeding events, and stent thrombosis in clopidogrel-treated patients with coronary stent placement. Circulation. 2010;121(4):512–8. https://doi.org/10.1161/CIRCULATIONAHA.109.885194
12. Scott SA, Sangkuhl K, Stein CM, Hulot JS, Mega JL, Roden DM, et al. Clinical Pharmacogenetics Implementation Consortium. Clinical Pharmacogenetics Implementation Consortium guidelines for CYP2C19 genotype and clopidogrel therapy: 2013 update. Clin Pharmacol Ther. 2013;94(3):317–23. https://doi.org/10.1038/clpt.2013.105
13. Lima JJ, Thomas CD, Barbarino J, Desta Z, Van Driest SL, Rouby NE, et al. Pharmacogenetics Implementation Consortium (CPIC) guideline for CYP2C19 and proton pump inhibitor dosing. Clin Pharmacol Ther. 2021;109(6):1417–23. https://doi.org/10.1002/cpt.2015
14. Moriyama B, Obeng AO, Barbarino J, Penzak SR, Henning SA, Scott SA, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines for CYP2C19 and voriconazole therapy. Clin Pharmacol Ther. 2017;102(1):45–51. https://doi.org/10.1002/cpt.583
15. Hicks JK, Bishop JR, Sangkuhl K, Müller DJ, Ji Y, Leckband SG, et al. Clinical Pharmacogenetics Implementation Consortium. Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for CYP2D6 and CYP2C19 genotypes and dosing of selective serotonin reuptake inhibitors. Clin Pharmacol Ther. 2015;98(2):127–34. https://doi.org/10.1002/cpt.147
16. Hicks JK, Sangkuhl K, Swen J, Ellingrod VL, Müller DJ, Shimoda K, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for CYP2D6 and CYP2C19 genotypes and dosing of tricyclic antidepressants: 2016 update. Clin Pharmacol Ther. 2017;102(1):37–44. https://doi.org/10.1002/cpt.597
17. Crews KR, Monte AA, Huddart R, Caudle KE, Kharasch ED, Gaedigk A, et al. Clinical Pharmacogenetics Implementation Consortium guideline for CYP2D6, OPRM1, and COMT genotypes and select opioid therapy. Clin Pharmacol Ther. 2021;110(4):888–96. https://doi.org/10.1002/cpt.2149
18. Amstutz U, Henricks LM, Offer SM, Barbarino J, Schellens JHM, Swen JJ, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for dihydropyrimidine dehydrogenase genotype and fluoropyrimidine dosing: 2017 update. Clin Pharmacol Ther. 2018;103(2):210–16. https://doi.org/10.1002/cpt.911
19. Relling MV, Schwab M, Whirl-Carrillo M, Suarez-Kurtz G, Pui CH, Stein CM, et al. Clinical Pharmacogenetics Implementation Consortium guideline for thiopurine dosing based on TPMT and NUDT15 genotypes: 2018 update. Clin Pharmacol Ther. 2019;105(5):1095–105. https://doi.org/10.1002/cpt.1304
20. Gammal RS, Court MH, Haidar CE, Iwuchukwu OF, Gaur AH, Alvarellos M, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for UGT1A1 and atazanavir prescribing. Clin Pharmacol Ther. 2016;99(4):363–9. https://doi.org/10.1002/cpt.269
21. Ramsey LB, Johnson SG, Caudle KE, Haidar CE, Voora D, Wilke RA, et al. The clinical pharmacogenetics implementation consortium guideline for SLCO1B1 and simvastatin-induced myopathy: 2014 update. Clin Pharmacol Ther. 2014;96(4):423–8. https://doi.org/10.1038/clpt.2014.125
22. Martin MA, Hoffman JM, Freimuth RR, Klein TE, Dong BJ, Pirmohamed M, et al. Clinical Pharmacogenetics Implementation Consortium guidelines for HLA-B genotype and abacavir dosing: 2014 update. Clin Pharmacol Ther. 2014;95(5):499–500. https://doi.org/10.1038/clpt.2014.38
23. Karnes JH, Rettie AE, Somogyi AA, Huddart R, Fohner AE, Formea CM, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for CYP2C9 and HLA-B genotypes and phenytoin dosing: 2020 update. Clin Pharmacol Ther. 2021;109(2):302–9. https://doi.org/10.1002/cpt.2008
24. Phillips EJ, Sukasem C, Whirl-Carrillo M, Müller DJ, Dunnenberger HM, Chantratita W, et al. Clinical Pharmacogenetics Implementation Consortium guideline for HLA genotype and use of carbamazepine and oxcarbazepine: 2017 update. Clin Pharmacol Ther. 2018;103(4):574–81. https://doi.org/10.1002/cpt.1004
25. Saito Y, Stamp LK, Caudle KE, Hershfield MS, McDonagh EM, Callaghan JT, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines for human leukocyte antigen B (HLA-B) genotype and allopurinol dosing: 2015 update. Clin Pharmacol Ther. 2016;99(1):36–7. https://doi.org/10.1002/cpt.161
26. McDermott JH, Wolf J, Hoshitsuki K, Huddart R, Caudle KE, Whirl-Carrillo M, et al. Clinical Pharmacogenetics Implementation Consortium guideline for the use of aminoglycosides based on MT-RNR1 genotype. Clin Pharmacol Ther. 2022;111(2):366–72. https://doi.org/10.1002/cpt.2309
27. Gonsalves SG, Dirksen RT, Sangkuhl K, Pulk R, Alvarellos M, Vo T, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for the use of potent volatile anesthetic agents and succinylcholine in the context of RYR1 or CACNA1S genotypes. Clin Pharmacol Ther. 2019;105(6):1338–44. https://doi.org/10.1002/cpt.1319
28. Aquilante CL, Langaee TY, Lopez LM, Yarandi HN, Tromberg JS, Mohuczy D, et al. Influence of coagulation factor, vitamin К epoxide reductase complex subunit 1, and cytochrome P450 2C9 gene polymorphisms on warfarin dose requirements. Clin Pharmacol Ther. 2006;79(4):291–302. https://doi.org/10.1016/j.clpt.2005.11.011
29. Higashi MK, Veenstra DL, Kondo LM, Wittkowsky AK, Srinouanprachanh SL, Farin FM, et al. Association between CYP2C9 genetic variants and anticoagulation-related outcomes during warfarin therapy. JAMA. 2002;287(13):1690–8. https://doi.org/10.1001/jama.287.13.1690
30. Takano M, Sugiyama T. UGT1A1 polymorphisms in cancer: impact on irinotecan treatment. Pharmgenomics Pers Med. 2017;10:61–8. https://doi.org/10.2147/PGPM.S108656
31. Booth RA, Ansari MT, Loit E, Tricco AC, Weeks L, Doucette S, et al. Assessment of thiopurine S-methyltransferase activity in patients prescribed thiopurines: a systematic review. Ann Intern Med. 2011;154(12):814–23. https://doi.org/10.7326/0003-4819-154-12-201106210-00009
32. Lennard L, Van Loon JA, Weinshilboum RM. Pharmacogenetics of acute azathioprine toxicity: relationship to thiopurine methyltransferase genetic polymorphism. Clin Pharmacol Ther. 1989;46(2):149–54. https://doi.org/10.1038/clpt.1989.119
33. Azzato EM, Chen RA, Wacholder S, Chanock SJ, Klebanoff MA, Caporaso NE. Maternal EPHX1 polymorphisms and risk of phenytoin-induced congenital malformations. Pharmacogenet Genomics. 2010;20(1):58–63. https://doi.org/10.1097/FPC.0b013e328334b6a3
34. Tao J, Li N, Liu Z, Deng Y, Li X, Chen M, et al. The effect on congenital heart diseases of maternal EPHX1 polymorphisms modified by polycyclic aromatic hydrocarbons exposure. Medicine (Baltimore). 2019;98(30):e16556. https://doi.org/10.1097/MD.0000000000016556
35. Hoffmeyer S, Burk O, von Richter O, Arnold HP, Brockmöller J, Johne A, et al. Functional polymorphisms of the human multidrug-resistance gene: multiple sequence variations and correlation ot one allele with P-glycoprotein expression and activity in vivo. Proc Natl Acad Sci USA. 2000;97(7):3473–8. https://doi.org/10.1073/pnas.050585397
36. Filipski KK, Mathijssen RH, Mikkelsen TS, Schinkel AH, Sparreboom A. Contribution of organic cation transporter 2 (OCT2) to cisplatin-induced nephrotoxicity. Clin Pharmacol Ther. 2009;86(4):396–402. https://doi.org/10.1038/clpt.2009.139
37. Rieder MJ, Reiner AP, Gage BF, Nickerson DA, Eby CS, McLeod HL, et al. Effect of VKORCl haplo-types on transcriptional regulation and warfarin dose. N Engl J Med. 2005;352(22):2285–93. https://doi.org/10.1056/NEJMoa044503
38. Ostroumova OD, Goloborodova IV. Drug-induced long QT interval: prevalence, risk factors, treatment and prevention. Consilium Medicum = Consilium Medicum. 2019;21(5):62–7 (In Russ.)
39. Stephens C, Lucena MI, Andrade RJ. Genetic variations in drug-induced liver injury (DILI): resolving the puzzle. Front Genet. 2012;3:253. https://doi.org/10.3389/fgene.2012.00253
40. Svensson CK, Cowen EW, Gaspari AA. Cutaneous drug reactions. Pharmacol Rev. 2001;53(3):357–79. PMID: 11546834
41. Chung WH, Hung SI, Hong HS, Hsih MS, Yang LC, Ho HC, et al. Medical genetics: a marker for Stevens–Johnson syndrome. Nature. 2004;428(6982):486. https://doi.org/10.1038/428486a
42. McCormack M, Alfirevic A, Bourgeois S, Farrell JJ, Kasperavičiūtė D, Carrington M, et al. HLA-A*3101 and carbamazepine-induced hypersensitivity reactions in Europeans. N Engl J Med. 2011;364(12):1134–43. doi:10.1056/NEJMoa1013297
43. Mallal S, Nolan D, Witt C, Masel G, Martin AM, Moore С, et al. Association between presence of HLA-B’5701, HLA-DR7, and HLA-DQ3 and hypersensitivity to HIV-1 reverse-transcriptase inhibitor abacavir. Lancet. 2002;359(9308):727–32. https://doi.org/10.1016/s0140-6736(02)07873-x
44. Mallal S, Phillips E, Carosi G, Molina JM, Workman C, Tomazic J, et al. HLA-B*5701 screening for hypersensitivity to abacavir. N Engl J Med. 2008;358(6):568–79. https://doi.org/10.1056/NEJMoa0706135
45. Relling MV, McDonagh EM, Chang T, Caudle KE, McLeod HL, Haidar CE, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines for rasburicase therapy in the context of G6PD deficiency genotype. Clin Pharmacol Ther. 2014;96(2):169–74. https://doi.org/10.1038/clpt.2014.97
46. Clancy JP, Johnson SG, Yee SW, McDonagh EM, Caudle KE, Klein TE, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines for ivacaftor therapy in the context of CFTR genotype. Clin Pharmacol Ther. 2014;95(6):592–7. https://doi.org/10.1038/clpt.2014.54
47. Brown JT, Bishop JR, Sangkuhl K, Nurmi EL, Mueller DJ, Dinh JC, et al. Clinical Pharmacogenetics Implementation Consortium guideline for cytochrome P450 (CYP)2D6 genotype and atomoxetine therapy. Clin Pharmacol Ther. 2019;106(1):94–102. https://doi.org/10.1002/cpt.1409
48. Bell GC, Caudle KE, Whirl-Carrillo M, Gordon RJ, Hikino K, Prows CA, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for CYP2D6 genotype and use of ondansetron and tropisetron. Clin Pharmacol Ther. 2017;102(2):213–8. https://doi.org/10.1002/cpt.598
49. Goetz MP, Sangkuhl K, Guchelaar HJ, Schwab M, Province M, Whirl-Carrillo M, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for CYP2D6 and tamoxifen therapy. Clin Pharmacol Ther. 2018;103(5):770–7. https://doi.org/10.1002/cpt.1007
50. Birdwell KA, Decker B, Barbarino JM, Peterson JF, Stein CM, Sadee W, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines for CYP3A5 genotype and tacrolimus dosing. Clin Pharmacol Ther. 2015;98(1):19–24. https://doi.org/10.1002/cpt.113
51. Muir AJ, Gong L, Johnson SG, Lee MTM, Williams MS, Klein TE, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines for IFNL3 (IL28B) genotype and PEG interferon-α-based regimens. Clin Pharmacol Ther. 2014;95(2):141–6. https://doi.org/10.1038/clpt.2013.203
Supplementary files
![]() |
1. Table 2. Clinical Pharmacogenetics Implementation Consortium (CPIC) recommendations for the use of medicines which, in the case of genetic variations, can lead to the development of adverse drug reactions or drug-induced diseases | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(942KB)
|
Indexing metadata ▾ |
Review
For citations:
Sychev D.A., Chernyaeva M.S., Ostroumova O.D. Genetic Risk Factors for Adverse Drug Reactions. Safety and Risk of Pharmacotherapy. 2022;10(1):48-64. (In Russ.) https://doi.org/10.30895/2312-7821-2022-10-1-48-64