Preview

Safety and Risk of Pharmacotherapy

Advanced search

Gene Therapy Medicinal Products: Non-clinical Safety Studies

https://doi.org/10.30895/2312-7821-2023-11-1-329

Abstract

Currently, gene therapy medicinal products (GTMPs) are actively developed in many countries, including the Russian Federation. However, the use of GTMPs raises class-specific safety concerns.
The aim of the study was to determine the main requirements for non-clinical safety testing of GTMPs, to identify risks associated with these medicinal products, to establish criteria for expert assessments, and to find optimisation opportunities for GTMP non-clinical safety programmes, using Russian and international experience in the assessment of submissions and the registration of medicinal products of this class.
The Russian Federation, the Eurasian Economic Union, the European Union, and the United States have created regulatory frameworks governing the lifecycle of GTMPs and continue improving these frameworks. The properties of GTMPs may create unique safety issues, such as insertional mutagenesis, unregulated transgene expression, long-term persistence and off-target spread, vertical germline transmission, and environmental risks. To account for these issues, a comprehensive non-clinical safety programme for GTMPs may require additional special studies along with the standard ones. This review focuses on the main approaches to designing non-cellular GTMP safety studies and evaluating the obtained results. The authors identified improvement opportunities for and problematic aspects of study design, as well as conditions for and limitations of non-clinical data extrapolation and clinical safety profile prediction. The continuous improvement and updating of the regulatory frameworks governing non-clinical studies of GTMPs mean that developers of non-clinical safety programmes for GTMPs should use all their experience, as well as relevant national and international guidelines and recommendations.

About the Authors

O. V. Astapova
Scientific Centre for Expert Evaluation of Medicinal Products
Russian Federation

Oksana V. Astapova

127051, Moscow, Petrovsky Blvd, 8/2



A. A. Berchatova
Scientific Centre for Expert Evaluation of Medicinal Products
Russian Federation

Anastasia A. Berchatova

127051, Moscow, Petrovsky Blvd, 8/2



References

1. Wolf DP, Mitalipov PA, Mitalipov SM. Principles of and strategies for germline gene therapy. Nat Med. 2019;25(6):890–7. https://doi.org/10.1038/s41591-019-0473-8

2. Sharma D, Arora S, Singh J, Layek B. A review of the tortuous path of nonviral gene delivery and recent progress. Int J Biol Macromol. 2021;183:2055–73. https://doi.org/10.1016/j.ijbiomac.2021.05.192

3. Ormond KE, Mortlock DP, Scholes DT, Bombard Y, Brody LC, Faucett WA, Garrison NA, Hercher L, Isasi R, Middleton A, Musunuru K, Shriner D, Virani A, Young CE. Human Germline Genome Editing. Am J Hum Genet. 2017;101(2):167–76. https://doi.org/10.1016/j.ajhg.2017.06.012

4. Gaj T, Gersbach CA, Barbas 3rd CF. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 2013;31(7):397–405. https://doi.org/10.1016/j.tibtech.2013.04.004

5. Joung JK, Sander JD. TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol. 2013;14(1):49–55. https://doi.org/10.1038/nrm3486

6. Porteus MH. A new class of medicines through DNA editing. N Engl J Med. 2019;380(10):947–59. https://doi.org/10.1056/NEJMra1800729

7. Sharma G, Sharma AR, Bhattacharya M, Lee SS, Chakraborty C. CRISPR-Cas9: a preclinical and clinical perspective for the treatment of human diseases. Mol Ther. 2021;29(2):571–86. https://doi.org/10.1016/j.ymthe.2020.09.028

8. Gjaltema RAF, Rots MG. Advances of epigenetic edi­ting. Curr Opin Chem Biol. 2020;57:75–81. https://doi.org/10.1016/j.cbpa.2020.04.020

9. Handal T, Eiges R. Correction of heritable epigenetic defects using editing tools. Int J Mol Sci. 2021;22(8):3966. https://doi.org/10.3390/ijms22083966

10. Bulcha JT, Wang Y, Ma H, Tai PWL, Gao G. Viral vector platforms within the gene therapy landscape. Signal Transduct Target Ther. 2021;6(1):53. https://doi.org/10.1038/s41392-021-00487-6

11. Wahane A, Waghmode A, Kapphahn A, Dhuri K, Gupta A, Bahal R. Role of lipid-based and polymer-based non-viral vectors in nucleic acid delivery for next-generation gene therapy. Molecules. 2020;25(12):2866. https://doi.org/10.3390/molecules25122866

12. Melnikova EV, Merkulova OV, Chaplenko AA, Rachinskaya OA, Merkulov VA. International practices of registration and use of drugs for gene therapy in clinical practice. Antibiotics and Chemotherapy. 2019;64(1–2):58–68 (In Russ.).

13. Soldatov AA, Avdeeva ZI, Gorenkov DV, Khantimirova LM, Guseva SG, Merkulov VA. Challenges in development and authorisation of gene therapy products. Biological Products. Prevention, Diagnosis, Treatment. 2022;22(1):6–22 (In Russ.). https://doi.org/10.30895/2221-996X-2022-22-1-6-22

14. Taube AA. Regulatory aspects of preclinical and clinical trials of drugs. Pharmacy. 2020;(6):38–45 (In Russ.). https://doi.org/10.29296/25419218-2020-06-07

15. Assaf BT, Whiteley LO. Considerations for preclinical safety assessment of adeno-associated virus gene therapy products. Toxicol Pathol. 2018;46(8):1020–7. https://doi.org/10.1177/0192623318803867

16. Hinderer C, Katz N, Buza EL, Dyer C, Goode T, Bell P, et al. Severe toxicity in nonhuman primates and piglets following high-dose intravenous administration of an adeno-associated virus vector expressing human SMN. Hum Gene Ther. 2018;29(3):285–98. https://doi.org/10.1089/hum.2018.015

17. Hordeaux J, Buza EL, Dyer C, Goode T, Mitchell TW, Richman L, et al. Adeno-associated virus-induced dorsal root ganglion pathology. Hum Gene Ther. 2020;31(15–16):808–18. https://doi.org/10.1089/hum.2020.167

18. Long BR, Sandza K, Holcomb J, Crockett L, Hayes GM, Arens J, et al. The impact of pre-existing immunity on the non-clinical pharmacodynamics of AAV5-based gene therapy. Mol Ther Methods Clin Dev. 2019;13:440–52. https://doi.org/10.1016/j.omtm.2019.03.006

19. Shirley JL, de Jong YP, Terhorst C, Herzog RW. Immune responses to viral gene therapy vectors. Mol Ther. 2020;28(3):709–22. https://doi.org/10.1016/j.ymthe.2020.01.001

20. Colella P, Ronzitti G, Mingozzi F. Emerging Issues in AAV-mediated in vivo gene therapy. Mol Ther Me­thods Clin Dev. 2017;8:87–104. https://doi.org/10.1016/j.omtm.2017.11.007

21. Mingozzi F, High KA. Immune responses to AAV vectors: overcoming barriers to successful gene therapy. Blood. 2013;122(1):23–36. https://doi.org/10.1182/blood-2013-01-306647

22. Huang X, Yang Y. Innate immune recognition of viruses and viral vectors. Hum Gene Ther. 2009;20(4):293–301. https://doi.org/10.1089/hum.2008.141

23. Janik E, Niemcewicz M, Ceremuga M, Krzowski L, Saluk-Bijak J, Bijak M. Various aspects of a gene editing system—CRISPR–Cas9. Int J Mol Sci. 2020;21(24):9604. https://doi.org/10.3390/ijms21249604

24. Makarova KS, Wolf YI, Iranzo J, Shmakov SA, Alkhnbashi OS, Brouns SJJ, et al. Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants. Nat Rev Microbiol. 2020;18(2):67–83. https://doi.org/10.1038/s41579-019-0299-x

25. Chew WL, Tabebordbar M, Cheng JK, Mali P, Wu EY, Ng AH, et al. A multifunctional AAV–CRISPR–Cas9 and its host response. Nat Methods. 2016;13(10):868–74. https://doi.org/10.1038/nmeth.3993

26. Charlesworth CT, Deshpande PS, Dever DP, Cama­rena J, Lemgart VT, Cromer MK, et al. Identification of preexisting adaptive immunity to Cas9 proteins in humans. Nat Med. 2019;25(2):249–54. https://doi.org/10.1038/s41591-018-0326-x

27. Ferdosi SR, Ewaisha R, Moghadam F, Krishna S, Park JG, Ebrahimkhani MR, et al. Multifunctional CRISPR-Cas9 with engineered immunosilenced human T cell epitopes. Nat Commun. 2019;10(1):1842. https://doi.org/10.1038/s41467-019-09693-x

28. Wagner DL, Amini L, Wendering DJ, Burkhardt LM, Akyüz L, Reinke P, et al. High prevalence of Streptococcus pyogenes Cas9-reactive T cells within the adult human population. Nat Med. 2019;25(2):242–8. https://doi.org/10.1038/s41591-018-0204-6

29. Lv H, Zhang S, Wang B, Cui S, Yan J. Toxicity of ca­tionic lipids and cationic polymers in gene delivery. J Control Release. 2006;114(1):100–9. https://doi.org/10.1016/j.jconrel.2006.04.014

30. Luly KM, Choi J, Rui Y, Green JJ, Jackson EM. Safety considerations for nanoparticle gene delivery in pediatric brain tumors. Nanomedicine (Lond). 2020;15(18):1805–15. https://doi.org/10.2217/nnm-2020-0110

31. Huang JY, Lu YM, Wang H, Liu J, Liao MH, Hong LJ, et al. The effect of lipid nanoparticle PEGylation on neuroinflammatory response in mouse brain. Biomaterials. 2013;34(32):7960–70. https://doi.org/10.1016/j.biomaterials.2013.07.009

32. Hacein-Bey-Abina S, Garrigue A, Wang GP, Soulier J, Lim A, Morillon E, et al. Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J Clin Invest. 2008;118(9):3132–42. https://doi.org/10.1172/JCI35700

33. Montini E, Cesana D, Schmidt M, Sanvito F, Ponzoni M, Bartholomae C, et al. Hematopoietic stem cell gene transfer in a tumor-prone mouse model uncovers low genotoxicity of lentiviral vector integration. Nat Biotechnol. 2006;24(6):687–96. https://doi.org/10.1038/nbt1216

34. Moiani A, Paleari Y, Sartori D, Mezzadra R, Miccio A, Cattoglio C, et al. Lentiviral vector integration in the human genome induces alternative splicing and generates aberrant transcripts. J Clin Invest. 2012;122(5):1653–66. https://doi.org/10.1172/JCI61852

35. Elsner C, Bohne J. The retroviral vector family: something for everyone. Virus Genes. 2017;53(5):714–22. https://doi.org/10.1007/s11262-017-1489-0

36. Deyle DR, Russell DW. Adeno-associated virus vector integration. Curr Opin Mol Ther. 2009;11(4):442–7. PMID:19649989

37. Chandler RJ, LaFave MC, Varshney GK, Trivedi NS, Carrillo-Carrasco N, Senac JS, et al. Vector design influences hepatic genotoxicity after adeno-associated virus gene therapy. J Clin Invest. 2015;125(2):870–80. https://doi.org/10.1172/JCI79213

38. Hanlon KS, Kleinstiver BP, Garcia SP, Zaborowski MP, Volak A, Spirig SE, et al. High levels of AAV vector integration into CRISPR-induced DNA breaks. Nat Commun. 2019;10(1):4439. https://doi.org/10.1038/s41467-019-12449-2

39. Enache OM, Rendo V, Abdusamad M, Lam D, Davison D, Pal S, et al. Author correction: Cas9 activates the p53 pathway and selects for p53-inactivating mutations. Nat Genet. 2020;52(7):748–9. https://doi.org/10.1038/s41588-020-0663-9

40. Haapaniemi E, Botla S, Persson J, Schmierer B, Taipale J. CRISPR–Cas9 genome editing induces a p53-mediated DNA damage response. Nat Med. 2018;24(7):927–30. https://doi.org/10.1038/s41591-018-0049-z

41. Ihry RJ, Worringer KA, Salick MR, Frias E, Ho D, Theriault K, et al. P53 inhibits CRISPR–Cas9 engineering in human pluripotent stem cells. Nat Med. 2018;24(7):939–46. https://doi.org/10.1038/s41591-018-0050-6

42. Zhang B. CRISPR/Cas gene therapy. J Cell Physiol. 2021;236(4):2459–81. https://doi.org/10.1002/jcp.30064

43. Karda R, Buckley SMK, Mattar CN, Ng J, Massaro G, Hughes MP, et al. Perinatal systemic gene delivery using adeno-associated viral vectors. Front Mol Neurosci. 2014;7:89.https://doi.org/10.3389/fnmol.2014.00089

44. Longmire M, Choyke PL, Kobayashi H. Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine (Lond). 2008;3(5):703–17.https://doi.org/10.2217/17435889.3.5.703


Supplementary files

Review

For citations:


Astapova O.V., Berchatova A.A. Gene Therapy Medicinal Products: Non-clinical Safety Studies. Safety and Risk of Pharmacotherapy. 2023;11(1):73-96. (In Russ.) https://doi.org/10.30895/2312-7821-2023-11-1-329

Views: 1967


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2312-7821 (Print)
ISSN 2619-1164 (Online)