Idiosyncratic Drug-Induced Liver Injury: From Pathogenesis to Risk Reduction
https://doi.org/10.30895/2312-7821-2023-11-2-204-214
Abstract
Idiosyncratic drug-induced liver injury (iDILI) is a rare and poorly predictable adverse drug reaction that may lead to death or liver transplantation in severe cases.
The aim of the study was to review contemporary concepts of the immune-mediated pathogenesis of iDILI and possible ways to predict and prevent the risk of developing this condition.
The liver is characterised by high immune tolerance due to a complex of mechanisms involving various cells (antigen-presenting cells, T-cells), cytokines, and other molecules, which prevents severe immune responses to xenobiotics entering the body. Previous research has shown that iDILI results from a combination of multiple synergistic unfavourable factors that impair liver immune tolerance at different levels. These factors include the hepatotoxicity-associated chemical properties of medicines and the individual characteristics of the patient, including the genetically determined structure and function of the adaptive immune system components. Since iDILI has a multilevel and multifactor pathogenesis, it is difficult to determine a risk biomarker for a particular medicine. According to the literature review, the risk of hepatotoxicity of a drug candidate and/or a metabolite can be reduced at the preclinical level by assessing the ability to cause mitochondrial damage, form non-covalent bonds, produce reactive oxygen species, and release damage-associated molecular patterns (DAMPs). The association of iDILI with gene polymorphisms in patients receiving certain medicines has a high negative predictive value and can be used in clinical practice to rule out iDILI or identify hepatotoxic medicinal products in polypharmacy. The identification of the allele combinations associated with an increased risk of iDILI seems promising for enhancing the predictive value of genetic studies and may be used in personalised medicine.
Keywords
About the Author
I. A. MazerkinaRussian Federation
Irina A. Mazerkina, Cand. Sci. (Med.)
8/2 Petrovsky Blvd, Moscow 127051
References
1. Kwon J, Kim S, Yoo H, Lee E. Nimesulide-induced hepatotoxicity: a systematic review and meta-analysis. PLoS One. 2019;14(1):e0209264. https://doi.org/10.1371/journal.pone.0209264
2. McNaughton R, Huet G, Shakir S. An investigation into drug products withdrawn from the EU market between 2002 and 2011 for safety reasons and the evidence used to support the decision-making. BMJ Open. 2014; 4(1):e004221. https://doi.org/10.1136/bmjopen-2013-004221
3. Onakpoya IJ, Heneghan CJ, Aronson JK. Post-marketing withdrawal of 462 medicinal products because of adverse drug reactions: a systematic review of the world literature. BMC Med. 2016;14:10. https://doi.org/10.1186/s12916-016-0553-2
4. Chen M, Will Y. Drug-induced liver toxicity. New York: Humana New York; 2018. https://doi.org/10.1007/978-1-4939-7677-5
5. de Abajo FJ, Montero D, Madurga M, García Rodríguez LA. Acute and clinically relevant drug-induced liver injury: a population based case-control study. Br J Clin Pharmacol. 2004;58(1):71–80. https://doi.org/10.1111/j.1365-2125.2004.02133.x
6. Robles-Diaz M, Lucena MI, Kaplowitz N, Stephens C, Medina-Cáliz I, González-Jimenez A, et al. Use of Hy’s law and a new composite algorithm to predict acute liver failure in patients with drug-induced liver injury. Gastroenterology. 2014;147(1):109–18.e5. https://doi.org/10.1053/j.gastro.2014.03.050
7. Hoofnagle JH, Björnsson ES. Drug-induced liver injury — types and phenotypes. N Engl J Med. 2019;381(3):264–73. https://doi.org/.1056/NEJMra1816149
8. Fontana RJ. Pathogenesis of idiosyncratic drug-induced liver injury and clinical perspectives. Gastroenterology. 2014;146(4):914–28. https://doi.org/10.1053/j.gastro.2013.12.032
9. Jee A, Sernoskie SC, Uetrecht J. Idiosyncratic drug-induced liver injury: mechanistic and clinical challenges. Int J Mol Sci. 2021;22(6):2954. https://doi.org/10.3390/ijms22062954
10. Lammert C, Einarsson S, Saha C, Niklasson A, Bjornsson E, Chalasani N. Relationship between daily dose of oral medications and idiosyncratic drug-induced liver injury: search for signals. Hepatology. 2008;47(6):2003–9. https://doi.org/10.1002/hep.22272
11. Ribas A, Hodi FS, Callahan M, Konto C, Wolchok J. Hepatotoxicity with combination of vemurafenib and ipilimumab. N Engl J Med. 2013;368(14):1365–6. https://doi.org/10.1056/NEJMc1302338
12. Daly AK, Day CP. Genetic association studies in drug-induced liver injury. Drug Metab Rev. 2012;44(1):116–26. https://doi.org/10.3109/03602532.2011.605790
13. Racanelli V, Rehermann B. The liver as an immunological organ. Hepatology. 2006;43(2 Suppl 1):S54–62. https://doi.org/10.1002/hep.21060
14. Doherty DG. Immunity, tolerance and autoimmunity in the liver: a comprehensive review. J Autoimmun. 2016;66:60–75. https://doi.org/10.1016/j.jaut.2015.08.020
15. Zheng M, Tian Z. Liver-mediated adaptive immune tolerance. Front Immunol. 2019;10:2525. https://doi.org/10.3389/fimmu.2019.02525
16. Foureau DM, Walling TL, Maddukuri V, Anderson W, Culbreath K, Kleiner DE, et al. Comparative analysis of portal hepatic infiltrating leucocytes in acute drug-induced liver injury, idiopathic autoimmune and viral hepatitis. Clin Exp Immunol. 2015;180(1):40–51. https://doi.org/10.1111/cei.12558
17. Pirmohamed M, Naisbitt DJ, Gordon F, Park BK. The danger hypothesis — potential role in idiosyncratic drug reactions. Toxicology. 2002;181–182:55–63. https://doi.org/10.1016/s0300-483x(02)00255-x
18. Zindel J, Kubes P. DAMPs, PAMPs, and LAMPs in immunity and sterile inflammation. Annu Rev Pathol. 2020;15:493–518. https://doi.org/10.1146/annurev-pathmechdis-012419-032847
19. Fleshner M, Crane CR. Exosomes, DAMPs and miRNA: features of stress physiology and immune homeostasis. Trends Immunol. 2017;38(10):768–76. https://doi.org/10.1016/j.it.2017.08.002
20. Pichler WJ. Pharmacological interaction of drugs with antigen-specific immune receptors: the p-i concept. Curr Opin Allergy Clin Immunol. 2002;2(4):301–5. https://doi.org/10.1097/00130832-200208000-00003
21. Keisu M, Andersson TB. Drug-induced liver injury in humans: the case of ximelagatran. Handb Exp Pharmacol. 2010;(196):407–18. https://doi.org/10.1007/978-3-642-00663-0_13
22. Ko TM, Chung WH, Wei CY, Shih HY, Chen JK, Lin CH, Chen YT, Hung SI. Shared and restricted T-cell receptor use is crucial for carbamazepine-induced Stevens-Johnson syndrome. J Allergy Clin Immunol. 2011;128(6):1266–76.e11. https://doi.org/10.1016/j.jaci.2011.08.013
23. Segovia-Zafra A, Di Zeo-Sánchez DE, López-Gómez C, Pérez-Valdés Z, García-Fuentes E, Andrade RJ, et al. Preclinical models of idiosyncratic drug-induced liver injury (iDILI): moving towards prediction. Acta Pharm Sin B. 2021;11(12):3685–726. https://doi.org/10.1016/j.apsb.2021.11.013
24. Ogese MO, Jenkins RE, Adair K, Tailor A, Meng X, Faulkner L, et al. Exosomal transport of hepatocyte-derived drug-modified proteins to the immune system. Hepatology. 2019;70(5):1732–49. https://doi.org/10.1002/hep.30701
25. Cosgrove BD, King BM, Hasan MA, Alexopoulos LG, Farazi PA, Hendriks BS, et al. Synergistic drug-cytokine induction of hepatocellular death as an in vitro approach for the study of inflammation-associated idiosyncratic drug hepatotoxicity. Toxicol Appl Pharmacol. 2009;237(3):317–30. https://doi.org/10.1016/j.taap.2009.04.002
26. Oda S, Matsuo K, Nakajima A, Yokoi T. A novel cell-based assay for the evaluation of immune- and inflammatory-related gene expression as biomarkers for the risk assessment of drug-induced liver injury. Toxicol Lett. 2016;241:60–70. https://doi.org/10.1016/j.toxlet.2015.10.029
27. Lowe R, Shirley N, Bleackley M, Dolan S, Shafee T. Transcriptomics technologies. PLoS Comput Biol. 2017;13(5):1005457. https://doi.org/10.1371/journal.pcbi.1005457
28. De Abrew KN, Overmann GJ, Adams RL, Tiesman JP, Dunavent J, Shan YK, et al. A novel transcriptomics based in vitro method to compare and predict hepatotoxicity based on mode of action. Toxicology. 2015;328:29–39. https://doi.org/10.1016/j.tox.2014.11.008
29. Ölander M, Wiśniewski JR, Artursson P. Cell-type-resolved proteomic analysis of the human liver. Liver Int. 2020;40(7):1770–80. https://doi.org/10.1111/liv.14452
30. Cuykx M, Rodrigues RM, Laukens K, Vanhaecke T, Covaci A. In vitro assessment of hepatotoxicity by metabolomics: a review. Arch Toxicol. 2018;92(10):3007–29. https://doi.org/10.1007/s00204-018-2286-9
31. Sakai C, Iwano S, Yamazaki Y, Ando A, Nakane F, Kouno M, et al. Species differences in the pharmacokinetic parameters of cytochrome P450 probe substrates between experimental animals, such as mice, rats, dogs, monkeys, and microminipigs, and humans. J Drug Metab Toxicol. 2014;5:6. https://doi.org/10.4172/2157-7609.1000173
32. Metushi IG, Hayes MA, Uetrecht J. Treatment of PD-1(-/-) mice with amodiaquine and anti-CTLA4 leads to liver injury similar to idiosyncratic liver injury in patients. Hepatology. 2015;61(4):1332–42. https://doi.org/10.1002/hep.27549
33. Chakraborty M, Fullerton AM, Semple K, Chea LS, Proctor WR, Bourdi M, et al. Drug-induced allergic hepatitis develops in mice when myeloid-derived suppressor cells are depleted prior to halothane treatment. Hepatology. 2015;62(2):546–57. https://doi.org/10.1002/hep.27764
34. Kakuni M, Morita M, Matsuo K, Katoh Y, Nakajima M, Tateno C, Yokoi T. Chimeric mice with a humanized liver as an animal model of troglitazone-induced liver injury. Toxicol Lett. 2012;214(1):9–18. https://doi.org/10.1016/j.toxlet.2012.08.001
35. Ekdahl A, Weidolf L, Baginski M, Morikawa Y, Thompson RA, Wilson ID. The metabolic fate of fenclozic acid in chimeric mice with a humanized liver. Arch Toxicol. 2018;92(9):2819–28. https://doi.org/10.1007/s00204-018-2274-0
36. Song B, Aoki S, Liu C, Susukida T, Ito K. An animal model of abacavir-induced HLA-mediated liver injury. Toxicol Sci. 2018;162(2):713–23. https://doi.org/10.1093/toxsci/kfy001
37. McGill MR, Jaeschke H. Animal models of drug-induced liver injury. Biochim Biophys Acta Mol Basis Dis. 2019;1865(5):1031–9. https://doi.org/10.1016/j.bbadis.2018.08.037
38. Stephens C, Lucena MI, Andrade RJ. Genetic risk factors in the development of idiosyncratic drug-induced liver injury. Expert Opin Drug Metab Toxicol. 2021;17(2):153–69. https://doi.org/10.1080/17425255.2021.1854726
39. Pachkoria K, Lucena MI, Ruiz-Cabello F, Crespo E, Cabello MR, Andrade RJ. Genetic polymorphisms of CYP2C9 and CYP2C19 are not related to drug-induced idiosyncratic liver injury (DILI). Br J Pharmacol. 2007;150(6):808–15. https://doi.org/10.1038/sj.bjp.0707122
40. Zhao M, Zhang T, Li G, Qiu F, Sun Y, Zhao L. Associations of CYP2C9 and CYP2A6 polymorphisms with the concentrations of valproate and its hepatotoxin metabolites and valproate-induced hepatotoxicity. Basic Clin Pharmacol Toxicol. 2017;121(2):138–43. https://doi.org/10.1111/bcpt.12776
41. Yimer G, Amogne W, Habtewold A, Makonnen E, Ueda N, Suda A, et al. High plasma efavirenz level and CYP2B6*6 are associated with efavirenz-based HAART-induced liver injury in the treatment of naïve HIV patients from Ethiopia: a prospective cohort study. Pharmacogenomics J. 2012;12(6):499–506. https://doi.org/10.1038/tpj.2011.34
42. Hu X, Zhang M, Bai H, Wu L, Chen Y, Ding L, et al. Antituberculosis drug-induced adverse events in the liver, kidneys, and blood: clinical profiles and pharmacogenetic predictors. Clin Pharmacol Ther. 2018;104(2):326–34. https://doi.org/10.1002/cpt.924
43. Daly AK, Aithal GP, Leathart JB, Swainsbury RA, Dang TS, Day CP. Genetic susceptibility to diclofenac-induced hepatotoxicity: contribution of UGT2B7, CYP2C8, and ABCC2 genotypes. Gastroenterology. 2007;132(1):272–81. https://doi.org/10.1053/j.gastro.2006.11.023
44. Wattanapokayakit S, Mushiroda T, Yanai H, Wichukchinda N, Chuchottawon C, Nedsuwan S, et al. NAT2 slow acetylator associated with anti-tuberculosis drug-induced liver injury in Thai patients. Int J Tuberc Lung Dis. 2016;20(10):1364–9. https://doi.org/10.5588/ijtld.15.0310
45. Sharma SK, Jha BK, Sharma A, Sreenivas V, Upadhyay V, Jaisinghani C, et al. Genetic polymorphisms of N-acetyltransferase 2 & susceptibility to antituberculosis drug-induced hepatotoxicity. Indian J Med Res. 2016;144(6):924–8. https://doi.org/10.4103/ijmr.IJMR_684_14
46. Du H, Chen X, Fang Y, Yan O, Xu H, Li L, et al. Slow N-acetyltransferase 2 genotype contributes to anti-tuberculosis drug-induced hepatotoxicity: a meta-analysis. Mol Biol Rep. 2013;40(5):3591–6. https://doi.org/10.1007/s11033-012-2433-y
47. Suvichapanich S, Fukunaga K, Zahroh H, Mushiroda T, Mahasirimongkol S, Toyo-Oka L, et al. NAT2 ultra-slow acetylator and risk of anti-tuberculosis drug-induced liver injury: a genotype-based meta-analysis. Pharmacogenet Genomics. 2018;28(7):167–76. https://doi.org/10.1097/FPC.0000000000000339
48. Zhang M, Wang S, Wilffert B, Tong R, van Soolingen D, van den Hof S, Alffenaar JW. The association between the NAT2 genetic polymorphisms and risk of DILI during anti-TB treatment: a systematic review and meta-analysis. Br J Clin Pharmacol. 2018;84(12):2747–60. https://doi.org/10.1111/bcp.13722
49. Li YJ, Phillips EJ, Dellinger A, Nicoletti P, Schutte R, Li D, et al. Human leukocyte antigen B*14:01 and B*35:01 are associated with trimethoprim-sulfamethoxazole induced liver injury. Hepatology. 2021;73(1):268–81. https://doi.org/10.1002/hep.31258
50. Hirata K, Takagi H, Yamamoto M, Matsumoto T, Nishiya T, Mori K, et al. Ticlopidine-induced hepatotoxicity is associated with specific human leukocyte antigen genomic subtypes in Japanese patients: a preliminary case-control study. Pharmacogenomics J. 2008;8(1):29–33. https://doi.org/10.1038/sj.tpj.6500442
51. Li C, Rao T, Chen X, Zou Z, Wei A, Tang J, et al. HLA-B*35:01 allele is a potential biomarker for predicting Polygonum multiflorum-induced liver injury in humans. Hepatology. 2019;70(1):346–57. https://doi.org/10.1002/hep.30660
52. Yang WN, Pang LL, Zhou JY, Qiu YW, Miao L, Wang SY, et al. Single-nucleotide polymorphisms of HLA and Polygonum multiflorum-induced liver injury in the Han Chinese population. World J Gastroenterol. 2020;26(12):1329–39. https://doi.org/10.3748/wjg.v26.i12.1329
53. O’Donohue J, Oien KA, Donaldson P, Underhill J, Clare M, MacSween RN, Mills PR. Co-amoxiclav jaundice: clinical and histological features and HLA class II association. Gut. 2000;47(5):717–20. https://doi.org/10.1136/gut.47.5.717
54. Aithal GP, Ramsay L, Daly AK, Sonchit N, Lea thart JB, Alexander G, et al. Hepatic adducts, circulating antibodies, and cytokine polymorphisms in patients with diclofenac hepatotoxicity. Hepatology. 2004;39(5):1430–40. https://doi.org/10.1002/hep.20205
55. Uffelmann E, Huang QQ, Munung NS, Vries J, Okada Y, Martin AR, et al. Genome-wide association studies. Nat Rev Methods Primers. 2021;(1):59. https://doi.org/10.1038/s43586-021-00056-9
56. Suvichapanich S, Wattanapokayakit S, Mushiroda T, Yanai H, Chuchottawon C, Kantima T, et al. Genomewide association study confirming the association of NAT2 with susceptibility to antituberculosis drug-induced liver injury in Thai patients. Antimicrob Agents Chemother. 2019;63(8):e02692–18. https://doi.org/10.1128/AAC.02692-18
57. Lucena MI, Molokhia M, Shen Y, Urban TJ, Aithal GP, Andrade RJ, et al. Susceptibility to amoxicillin-clavulanate-induced liver injury is influenced by multiple HLA class I and II alleles. Gastroenterology. 2011;141(1):338–47. https://doi.org/10.1053/j.gastro.2011.04.001
58. Nicoletti P, Barrett S, McEvoy L, Daly AK, Aithal G, Lucena MI, et al. Shared genetic risk factors across carbamazepine-induced hypersensitivity reactions. Clin Pharmacol Ther. 2019;106(5):1028–36. https://doi.org/10.1002/cpt.1493
59. Nicoletti P, Aithal GP, Bjornsson ES, Andrade RJ, Sawle A, Arrese M, et al. Association of liver injury from specific drugs, or groups of drugs, with polymorphisms in HLA and other genes in a genome-wide association study. Gastroenterology. 2017;152(5):1078–89. https://doi.org/10.1053/j.gastro.2016.12.016
60. Urban TJ, Nicoletti P, Chalasani N, Serrano J, Stolz A, Daly AK, et al. Minocycline hepatotoxicity: clinical characterization and identification of HLA-B*35:02 as a risk factor. J Hepatol. 2017;67(1):137–44. https://doi.org/10.1016/j.jhep.2017.03.010
61. Bruno CD, Fremd B, Church RJ, Daly AK, Aithal GP, Björnsson ES, et al. HLA associations with infliximab-induced liver injury. Pharmacogenomics J. 2020;20(5):681–6. https://doi.org/10.1038/s41397-020-0159-0
62. Daly AK, Donaldson PT, Bhatnagar P, Shen Y, Pe’er I, Floratos A, et al. HLA-B*5701 genotype is a major determinant of drug-induced liver injury due to flucloxacillin. Nat Genet. 2009;41(7):816–9. https://doi.org/10.1038/ng.379
63. Nicoletti P, Aithal GP, Chamberlain TC, Coulthard S, Alshabeeb M, Grove JI, et al. Drug-induced liver injury due to flucloxacillin: relevance of multiple human leukocyte antigen alleles. Clin Pharmacol Ther. 2019;106(1):245–53. https://doi.org/10.1002/cpt.1375
64. Kindmark A, Jawaid A, Harbron CG, Barratt BJ, Bengtsson OF, Andersson TB, et al. Genome-wide pharmacogenetic investigation of a hepatic adverse event without clinical signs of immunopathology suggests an underlying immune pathogenesis. Pharmacogenomics J. 2008;8(3):186–95. https://doi.org/10.1038/sj.tpj.6500458
65. Spraggs CF, Budde LR, Briley LP, Bing N, Cox CJ, King KS, et al. HLA-DQA1*02:01 is a major risk factor for lapatinib-induced hepatotoxicity in women with advanced breast cancer. J Clin Oncol. 2011;29(6):667–73. https://doi.org/10.1200/JCO.2010.31.3197
66. Parham LR, Briley LP, Li L, Shen J, Newcombe PJ, King KS, et al. Comprehensive genome-wide evaluation of lapatinib-induced liver injury yields a single genetic signal centered on known risk allele HLA-DRB1*07:01. Pharmacogenomics J. 2016;16(2):180–5. https://doi.org/10.1038/tpj.2015.40
67. Singer JB, Lewitzky S, Leroy E, Yang F, Zhao X, Klickstein L, et al. A genome-wide study identifies HLA alleles associated with lumiracoxib-related liver injury. Nat Genet. 2010;42(8):711–4. https://doi.org/10.1038/ng.632
68. Nicoletti P, Werk AN, Sawle A, Shen Y, Urban TJ, Coulthard SA, et al. HLA-DRB1*16: 01-DQB1*05: 02 is a novel genetic risk factor for flupirtine-induced liver injury. Pharmacogenet Genomics. 2016;26(5):218–24. https://doi.org/10.1097/FPC.0000000000000209
69. Cirulli ET, Nicoletti P, Abramson K, Andrade RJ, Bjornsson ES, Chalasani N, et al. A missense variant in PTPN22 is a risk factor for drug-induced liver injury. Gastroenterology. 2019;156(6):1707–1716.e2. https://doi.org/10.1053/j.gastro.2019.01.034
70. Zhang X, Yu Y, Bai B, Wang T, Zhao J, Zhang N, et al. PTPN22 interacts with EB1 to regulate T-cell receptor signaling. FASEB J. 2020;34(7):8959–74. https://doi.org/10.1096/fj.201902811RR
71. Alfirevic A, Pirmohamed M. Predictive genetic testing for drug-induced liver injury: considerations of clinical utility. Clin Pharmacol Ther. 2012;92(3):376–80. https://doi.org/10.1038/clpt.2012.107
72. Kaliyaperumal K, Grove JI, Delahay RM, Griffiths WJH, Duckworth A, Aithal GP. Pharmacogenomics of drug-induced liver injury (DILI): molecular biology to clinical applications. J Hepatol. 2018;69(4):948–57. https://doi.org/10.1016/j.jhep.2018.05.013
Supplementary files
Review
For citations:
Mazerkina I.A. Idiosyncratic Drug-Induced Liver Injury: From Pathogenesis to Risk Reduction. Safety and Risk of Pharmacotherapy. 2023;11(2):204-214. (In Russ.) https://doi.org/10.30895/2312-7821-2023-11-2-204-214