Preclinical Ophthalmotoxicity Studies of Medicinal Products: a Review of Regulatory Approaches and Research Methods
https://doi.org/10.30895/2312-7821-2025-406
Abstract
INTRODUCTION. Ophthalmotoxicity assessment of potential drugs is a highly meaningful element of preclinical trials that reflects modes of action and pharmacological effects of a chemical compound on the eyes in topical and systemic use. However, there is no relevant common algorithm for ophthalmotoxicity assessment, suggesting expediency of summarising Russian and foreign experience.
AIM. This study aimed to develop an algorithm assessing ophthalmotoxicity of medicinal products in preclinical in vivo studies based on Russian and international guidelines.
DISCUSSION. Study approaches of chemical compound ophthalmotoxicity were analysed in Russian and international regulatory documents (Guidelines for conducting preclinical studies of medicines, GOST 34658-2020, Guidelines of Organisation for Economic Co-operation and Development (OECD) No. 450 and No. 263). The recommended methods prove to be applicable in preclinical studies and make it possible to study the effect of chemical compounds on the structure (ophthalmoscopy, biomicroscopy, optical coherence tomography) and functions (electroretinography) of the eyes. The study included basic information on the comparative eye anatomy and physiology in mice, rats, and rabbits, crucial for studying irritant and retinotoxic effects and translating the results into clinical trials. Ophthalmotoxicity research methods and their practical application in typical laboratory animals were described in detail considering their anatomy and physiology. Based on generalised study data, a comprehensive differential approach is proposed for ophthalmotoxicity study of the developed medicinal products.
CONCLUSIONS. The proposed algorithm assessing ocular toxicity of ophthalmic and systemic drugs makes it possible to optimise the design and schedule of preclinical studies in animals and improve the safety of drug use in humans.
Keywords
About the Authors
L. V. NaumenkoRussian Federation
Liudmila V. Naumenko, Dr. Sci. (Med.)
1 Pavshikh Bortsov Sq., Volgograd 400131
Yu. A. Govorova
Russian Federation
Yulia A. Govorova, Cand. Sci. (Med.)
1 Pavshikh Bortsov Sq., Volgograd 400131
A. S. Таrаn
Russian Federation
Alena S. Таrаn, Cand. Sci. (Med.)
1 Pavshikh Bortsov Sq., Volgograd 400131
References
1. To TQ, Townsend JC. Ocular toxicity of systemic medications: A case series. Optometry. 2000;71(1):29–39. PMID: 10680416
2. Peng JP, Yang XY, Luo F, et al. Hydroxychloroquine-induced hyperpigmentation of the skin and bull’s-eye maculopathy in rheumatic patients: A case report and literature review. Front Immunol. 2024;15:1383343. https://doi.org/10.3389/fimmu.2024.1383343
3. Li J, Tripathi RC, Tripathi BJ. Drug-induced ocular disorders. Drug Saf. 2008;31(2):127–41. https://doi.org/10.2165/00002018-2008-31020-00003
4. Tsang SH, Sharma T. Drug-induced retinal toxicity. In: Tsang SH, Sharma T, eds. Atlas of inherited retinal diseases. Springer Cham; 2018. https://doi.org/10.1007/978-3-319-95046-4_48
5. Ye YT, Zhou ZY, Wen LS, et al. The significance of the ocular adverse effect induced by systemic taxane application. Front Bioscience (Landmark Ed). 2022;27(6):171. https://doi.org/10.31083/j.fbl2706171
6. Ahn SJ, Ryu SJ, Lim HW, Lee BR. Toxic effects of hydroxychloroquine on the choroid: Evidence from multimodal imaging. Retina. 2019;39(5):1016–26. https://doi.org/10.1097/IAE.0000000000002047
7. Santaella RM, Fraunfelder FW. Ocular adverse effects associated with systemic medications: Recognition and management. Drugs. 2007;67(1):75–93. https://doi.org/10.2165/00003495-200767010-00006
8. Green MB, Duker JS. Adverse ocular effects of systemic medications. Life (Basel). 2023;13(3):660. https://doi.org/10.3390/life13030660
9. Mecklenburg L, Schraermeyer U. An overview on the toxic morphological changes in the retinal pigment epithelium after systemic compound administration. Toxicol Pathol. 2007;35(2):252–67. https://doi.org/10.1080/01926230601178199
10. Wilkie DA. The ophthalmic examination as it pertains to general ocu lar toxicology: Basic and advanced techniques and species-associated findings. In: Gilger B, ed. Ocular pharmacology and toxicology. Methods in pharmacology and toxicology. Totowa, NJ: Humana Press; 2013. https://doi.org/10.1007/7653_2013_7
11. Krasnova TV, Kanyukova IV. Retinopathical accessory drug-induced action and measures of prevention. Vestnik of the Orenburg State University. 2004;S(38):202–5 (In Russ.). EDN: JVEKOV
12. Corradetti G, Violanti S, Au A, Sarraf D. Wide field retinal imaging and the detection of drug associated retinal toxicity. Int J Retin Vitreous. 2019;5(Suppl 1):26. https://doi.org/10.1186/s40942-019-0172-0
13. Muthuswamy A, Pardo ID, Rao DB, et al. Neuroanatomy and sampling of central projections for the visual system in mammals used in toxicity testing. Toxicol Pathol. 2021;49(3):455–71. https://doi.org/10.1177/0192623320967279
14. Kaczmarek JV, Bogan CM, Pierce JM, et al. Intravitreal HDAC inhibitor belinostat effectively eradicates vitreous seeds without retinal toxicity in vivo in a rabbit retinoblastoma model. Invest Ophthalmol Vis Sci. 2021;62(14):8. https://doi.org/10.1167/iovs.62.14.8
15. Alépée N, Leblanc V, Grandidier MH, et al. SkinEthic HCE Time-to-Toxicity on solids: A test method for distinguishing chemicals inducing serious eye damage, eye irritation and not requiring classification and labelling. Toxicol In Vitro. 2021;75:105203. https://doi.org/10.1016/j.tiv.2021.105203
16. Bonneau N, Potey A, Vitoux MA, et al. Corneal neuroepithelial compartmentalized microfluidic chip model for evaluation of toxicity-induced dry eye. Ocul Surf. 2023;30:307–19. https://doi.org/10.1016/j.jtos.2023.11.004
17. Ramsay E, Del Amo EM, Toropainen E, et al. Corneal and conjunctival drug permeability: Systematic comparison and pharmacokinetic impact in the eye. Eur J Pharm Sci. 2018;119:83–9. https://doi.org/10.1016/j.ejps.2018.03.034
18. Vézina M. Comparative ocular anatomy in commonly used laboratory animals. In: Weir A, Collins M, eds. Assessing ocular toxicology in laboratory animals. Molecular and integrative toxicology. Totowa, NJ: Humana Press; 2012. Р. 1–21. https://doi.org/10.1007/978-1-62703-164-6_1
19. Wu Y, Feng Y, Yang J, et al. Anatomical and Micro-CT measurement analysis of ocular volume and intraocular volume in adult Bama Miniature pigs, New Zealand rabbits, and Sprague-Dawley rats. PloS One. 2024;19(9):e0310830. https://doi.org/10.1371/journal.pone.0310830
20. Shibuya K, Tomohiro M, Sasaki S, Otake S. Characteristics of structures and lesions of the eye in laboratory animals used in toxicity studies. J Toxicol Pathol. 2015;28(4):181–8. https://doi.org/10.1293/tox.2015-0037
21. Perlman I. Testing retinal toxicity of drugs in animal mo dels using electrophysiological and morphological techniques. Doc Ophthalmol. 2009;118(1):3–28. https://doi.org/10.1007/s10633-008-9153-6
22. Agafonov SG, Gasanova SR, Shatskikh AV. Morphological features of the eyes of laboratory animals according to light microscopy data. In: Takhchidi HP, ed. Actual problems of ophthalmology 2008. Moscow; 2009 (In Russ.).
23. Prudnikova EV, Bokarev AV, Minina AO, Pilipets EYa. Ophthalmoscopy as a method for assessing the pharmacological safety of drugs. Laboratory Animals for Science. 2023;(4):35–42 (In Russ.). https://doi.org/10.57034/2618723X-2023-04-03
24. Negro Silva LF, Li C, de Seadi Pereira PJB, et al. Biochemical and electroretinographic characterization of the minipig eye in the context of drug safety investigations. Int J Toxicol. 2019;38(5):415–22. https://doi.org/10.1177/1091581819867929
25. Semenova MV, Chukina SI, Koveshnikova EI. Studies on local irritative effects of drugs Aversect Forte and Aversect Combi applied to the skin and conjunctiva. Russian Journal of Parasitology. 2016;36(2):240–4 (In Russ.). https://doi.org/10.12737/20069
26. Ubels JL, Daniel P. Clousing in vitro alternatives to the use of animals in ocular toxicology testing. Ocul Surf. 2005;3(3):126–42. https://doi.org/10.1016/s1542-0124(12)70195-7
27. Realini T, Fechtner RD, Atreides SP, Gollance S. The uniocular drug trial and second-eye response to glaucoma medications. Ophthalmology. 2004;111(3):421–6. https://doi.org/10.1016/j.ophtha.2003.08.022
28. Avila MY, Carré DA, Stone RA, Civan MM. Reliable measurement of mouse intraocular pressure by a servo-null micropipette system. Invest Ophthalmol Vis Sci. 2001;42(8):1841–6. PMID: 11431452
29. Ansari-Mood M, Mehdi-Rajaei S, Sadjadi R, et al. Twenty-four-hour measurement of intraocular pressure in guinea pigs (Cavia porcellus). J Am Assoc Lab Anim Sci. 2016;55(1):95–7. PMID: 26817986
30. Atalay E, Tamçelik N, Cicik ME. The impact of pupillary dilation on intraocular pressure and anterior segment morphology in subjects with and without pseudoexfoliation. Curr Eye Res. 2015;40(6):646–52. https://doi.org/10.3109/02713683.2014.954674
31. Millar JC, Pang IH. Non-continuous measurement of intraocular pressure in laboratory animals. Exp Eye Res. 2015;141:74–90. https://doi.org/10.1016/j.exer.2015.04.018
32. Gandhi JK, Chowdhury UR, Manzar Z, et al. Differential intraocular pressure measurements by tonometry and direct cannulation after treatment with soluble adenylyl cyclase inhibitors. J Ocul Pharmacol Ther. 2017;33(8):574–81. https://doi.org/10.1089/jop.2017.0027
33. Kanski J, Kanski J. Ocular examination techniques. In: Clinical ophthalmology: A systematic approach. Butterworth Heinemann/Elsevier; 2007. Р. 1–32.
34. Luan CS, Chen XM, Deng YP, et al. The relationship between central corneal thickness and Perkins applanation tonometry in rabbits. Zhonghua Yan Ke Za Zhi. 2005;41(7):642–6 (In Chinese).
35. Acosta AC, Espana EM, Nose I, et al. Estimation of intraocular pressure in rabbits with commonly used tonometers. Ophthalmic Surg Lasers Imaging. 2007;38(1):43–9. https://doi.org/10.3928/15428877-20070101-06
36. Avila, MY, Múnera A, Guzmán A, et al. Noninvasive intraocular pressure measurements in mice by pneumotonometry. Invest Ophthalmol Vis Sci. 2005;46(9):3274–80. https://doi.org/10.1167/iovs.04-1188
37. Munger RJ, Collins M. Assessment of ocular toxicity potential: Basic theory and techniques. In: Weir A, Collins M, eds. Assessing ocular toxicology in laboratory animals. Molecular and integrative toxicology. Totowa, NJ: Humana Press; 2012. Р. 23–52. https://doi.org/10.1007/978-1-62703-164-6_2
38. Mermoud A, Baerveldt G, Minckler DS, et al. Intraocular pressure in Lewis rats. Invest Ophthalmol Vis Sci. 1994;35(5):2455–60.
39. Porfiriev IA, Gonchar OP. Ophthalmotonus for the rabbits. Methods of definition. Normal parameters. Bulletin of the Russian Peoples’ Friendship University. Series: Agricultural sciences. Animal husbandry. 2005;(12):73–5 (In Russ.). EDN: IIRCMR
40. Eaton JS, Miller PE, Bentley E, et al. Slit lamp-based ocular scoring systems in toxicology and drug development: A literature survey. J Ocul Pharmacol Ther. 2017;33(10):707–17. https://doi.org/10.1089/jop.2017.0021
41. Jakubiak P, Lack F, Thun J, et al. Influence of melanin characteristics on drug binding properties. Mol Pharm. 2019;16(6):2549–56. https://doi.org/10.1021/acs.molpharmaceut.9b00157
42. Corr RH. Fundoscopy in the smartphone age: current ophthalmoscopy methods in neurology. Arq Neuropsiquiatr. 2023;81(5):502–9. https://doi.org/10.1055/s-0043-1763489
43. Petrachkov DV, Budzinskaya MV, Baryshev KV. Current possibilities in visualization of retinal periphery in diabetic retinopathy. Russian Annals of Ophthalmology. 2020;136(4):272–8 (In Russ.). https://doi.org/10.17116/oftalma2020136042272
44. Eaton JS, Miller PE, Bentley E, et al. The SPOTS System: An ocu lar scoring system optimized for use in modern preclinical drug development and toxicology. J Ocul Pharmacol Ther. 2017;33(10):718–34. https://doi.org/10.1089/jop.2017.0108
45. Anafjanova TV, Volkov AA, Karamchakova LA. To the question on use fundus of the chamber in the conditions of specialized polyclinic. Fundamental Research. 2011;(9-3):382–4 (In Russ.). EDN: OCQSEP
46. Panwar N, Huang P, Lee J, et al. Fundus photography in the 21st century — A review of recent technological advances and their implications for worldwide healthcare. Telemed J E Health. 2016;22(3):198–208. https://doi.org/10.1089/tmj.2015.0068
47. Nork TM, Rasmussen, CA, Christian BJ, et al. Emerging imaging technologies for assessing ocular toxicity in laboratory animals. In: Weir A, Collins M, eds. Assessing ocular toxicology in laboratory animals. Molecular and integrative toxicology. Totowa, NJ: Humana Press; 2012. Р. 53–121. https://doi.org/10.1007/978-1-62703-164-6_3
48. Rösch S, Johnen S, Mazinani B, et al. The effects of iodoacetic acid on the mouse retina. Graefes Arch Clin Exp Ophthalmol. 2015;253(1):25–35. https://doi.org/10.1007/s00417-014-2652-0
49. Brock WJ, Somps CJ, Torti V, et al. Ocular toxicity assessment from systemically administered xenobiotics: Considerations in drug development. Int J Toxicol. 2013;32(3):171–88. https://doi.org/10.1177/1091581813484500
50. Pournaras CJ, Rungger-Brändle E, Riva CE, et al. Regulation of retinal blood flow in health and disease. Prog Retin Eye Res. 2008;27(3):284–330. https://doi.org/10.1016/j.preteyeres.2008.02.002
51. Flammer J, Orgül S, Costa VP, et al. The impact of ocular blood flow in glaucoma. Prog Retin Eye Res. 2002;21(4):359–93. https://doi.org/10.1016/S1350-9462(02)00008-3
52. Xie Z, Wu X, Cheng R, et al. A novel model of subretinal edema induced by DL-alpha aminoadipic acid. Exp Eye Res. 2023;228:109388. https://doi.org/10.1016/j.exer.2023.109388
53. Hagag AM, Huang D. Optical coherence tomography angiography in neuro-ophthalmology. J Neuroophthalmol. 2017;37(4):355–7. https://doi.org/10.1097/WNO.0000000000000584
54. Kiseleva TN, Chudin AV, Ramazanova KA. Methods of ocular microcirculation assessment in experimental animals. Russian Annals of Ophthalmology. 2014;130(5):100–3 (In Russ.). EDN: TGLRUV
55. Chauhan BC, Yu PK, Cringle SJ, Yu DY. Confocal scanning laser Doppler flowmetry in the rat retina: Origin of flow signals and dependence on scan depth. Arch Ophthalmol. 2006;124(3):397–402. https://doi.org/10.1001/archopht.124.3.397
56. Mottet B, Aptel F, Geiser MH, et al. Choroidal blood flow after the first intravitreal ranibizumab injection in neovascular age-related macular degeneration patients. Acta Ophthalmol. 2018;96(7):e783–8. https://doi.org/10.1111/aos.13763
57. Kazaykin VN, Ponomarev VO, Lizunov AV, Titarenko EM. Modern use of electrophysiological methods in diagnostics of eye diseases and assessment of medications toxic effects (a brief literary review). Otraženie. 2021;2(12):36–40 (In Russ.). https://doi.org/10.25276/2686-6986-2021-2-36-40
58. Rosolen SG, Kolomiets B, Varela O, Picaud S. Retinal electrophysiology for toxicology studies: Applications and limits of ERG in animals and ex vivo recordings. Exp Toxicol Pathol. 2008;60(1):17–32. https://doi.org/10.1016/j.etp.2007.11.012
59. Robson AG, Nilsson J, Li S, et al. ISCEV guide to visual electrodiagnostic procedures. Doc Ophthalmol. 2018;136(1):1–26. https://doi.org/10.1007/s10633-017-9621-y
60. McCulloch DL, Marmor MF, Brigell MG, et al. ISCEV Standard for full-field clinical electroretinography (2015 update). Doc Ophthalmol. 2015;130(1):1–12. https://doi.org/10.1007/s10633-014-9473-7
61. Tomiyama Y, Fujita K, Nishiguchi KM, et al. Measurement of electroretinograms and visually evoked potentials in awake moving mice. PLoS One. 2016;11(6):e0156927. https://doi.org/10.1371/journal.pone.0156927
62. Peresypkina AA, Pokrovskii MV, Gubareva VO, Levkova EA. Correction of hypertensive neuroretinopathy by dimethylaminoethanol derivative 7–16 in experiment. Kuban Scientific Medical Bulletin. 2018;25(1):103–7 (In Russ.). EDN: YOUTYH
63. Ver Hoeve J, Munge R, Murph C, Nork T. Emerging electrophysiological technologies for assessing ocular toxicity in laboratory animals. In: Weir A, Collins M, eds. Assessing ocular toxicology in laboratory animals. Molecular and integrative toxicology. Totowa, NJ: Humana Press; 2012. Р. 123–57. https://doi.org/10.1007/978-1-62703-164-6_4
64. Li X, Zhang W, Ye Z, et al. Safety evaluation and pharmacodynamics of minocycline hydrochloride eye drops. Mol Vis. 2022;28:460–79. PMID: 36605830
65. Tao Y, Chen T, Liu B, et al. The neurotoxic effects of N-methyl-N-nitrosourea on the electrophysiological property and visual signal transmission of rat’s retina. Toxicol Appl Pharmacol. 2015;286(1):44–52. https://doi.org/10.1016/j.taap.2015.03.013
66. Suetov AA, Alekperov SI, Odinokaya MA, Kostina AA. Multifocal electroretinography in the study of focal and diffuse damage to the rabbit retina. Russian Annals of Ophthalmology. 2020;136(4):47–56 (In Russ.). https://doi.org/10.17116/oftalma202013604147
67. Bayer AU, Cook P, Brodie SE, et al. Evaluation of different recording parameters to establish a standard for flash electroretinography in rodents. Vision Res. 2001;41(17):2173–85. https://doi.org/10.1016/s0042-6989(01)00103-1
68. Klochihina EM, Erdyakov AK, Morozova MP, et al. Electrical activity in rat retina in a streptozotocin-induced diabetes model. Diabetes Mellitus. 2018;21(5):356–63 (In Russ.). https://doi.org/10.14341/DM9490
69. Salas-Ambrosio PJ, Bernad-Bernad MJ, Linares-Alba MA, et al. Toxicity evaluation of a novel rapamycin liposomal formulation after subconjunctival and intravitreal injection. J Ocul Pharmacol Ther. 2021;37(5):261–76. https://doi.org/10.1089/jop.2020.0108
70. Moriguchi M, Nakamura S, Inoue Y, et al. Irreversible photoreceptors and RPE cells damage by intravenous sodium iodate in mice is related to macrophage accumulation. Invest Ophthalmol Vis Sci. 2018;59(8):3476–87. https://doi.org/10.1167/iovs.17-23532
71. Majimbi M, McLenachan S, Nesbit M, et al. In vivo retinal imaging is associated with cognitive decline, blood-brain barrier disruption and neuroinflammation in type 2 diabetic mice. Front Endocrinol (Lausanne). 2023;14:1224418. https://doi.org/10.3389/fendo.2023.1224418
72. Hébert-Lalonde N, Carmant L, Major P, et al. Electrophysiological evidences of visual field alterations in children exposed to vigabatrin early in life. Pediatr Neurol. 2016;59:47–53. https://doi.org/10.1016/j.pediatrneurol.2016.03.001
73. Fursova AZh, Derbeneva AS, Vasilyeva MA, et al. Development, clinical manifestations and diagnosis of retinal changes in chronic kidney disease. Russian Annals of Ophthalmology. 2021;137(1):107–14 (In Russ.). https://doi.org/10.17116/oftalma2021137011107
Supplementary files
![]() |
1. Table 1. Approach to testing and assessment of serious eye damage and irritation in accordance with Guidance document No. 263 on integrated approaches to testing and assessment (IATA) for serious eye damage and eye irritation (OECD GD Guideline No. 263) | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(161KB)
|
Indexing metadata ▾ |
Review
For citations:
Naumenko L.V., Govorova Yu.A., Таrаn A.S. Preclinical Ophthalmotoxicity Studies of Medicinal Products: a Review of Regulatory Approaches and Research Methods. Safety and Risk of Pharmacotherapy. (In Russ.) https://doi.org/10.30895/2312-7821-2025-406