Preview

Safety and Risk of Pharmacotherapy

Advanced search

Preclinical Safety Assessment of Antineoplastic Agents Based on Live Non-Pathogenic Enteroviruses

https://doi.org/10.30895/2312-7821-2024-415

Abstract

INTRODUCTION. Developing novel medicines based on non-pathogenic enterovirus strains exhibiting oncotropic and oncolytic properties represents an up-to-date and safe approach to complex cancer treatment and postoperative metastasis prevention. Safety pharmacology studies are a necessary step in the preclinical development of medicinal products.

AIM. The study aimed to investigate the single and repeated-dose general toxicity, local tolerance, safety pharmacology, and pyrogenicity of medicinal products based on non-pathogenic LEV4, LEV7, LEV8, LEV14, and Russo enterovirus strains as part of preclinical safety studies.

MATERIALS AND METHODS. The study used medicinal products of highly purified group A, B, and C enteroviruses at a titre of 2×107–5×108 CPD50/mL (CPD50 is a cytopathogenic dose of the virus causing 50% cell lysis) and normal saline as a diluent. The viruses were propagated in Vero cells. The safety study used 220 male and female BALB/c mice, 440 male and female Wistar rats, and 18 male Soviet chinchilla rabbits. The study animals received an intravenous dose of 1×105 or 1×106 CPD50/animal once (single-dose toxicity) or weekly for 90 days (repeated-dose toxicity). Clinical examination, laboratory testing, and necropsy were performed on Days 45 and 91 of the experiment. Statistical data processing was performed using Prism 8.0 software (GraphPad Software, Inc., USA).

RESULTS. Upon single administration of each of the five enterovirus medicinal products to mice and rats, the authors observed complete survival, upward trends in body weight gain, and no gross or histopathological changes in the brain, spleen, liver, kidneys, lungs, or at the injection site. Upon repeated administration at the study doses, the medicinal products caused no functional changes in the organs and systems. All the studied parameters were within the normal physiological ranges for male and female rats. Histopathological examination revealed no pathological changes or specific cytolytic and/or cytopathic effects. No local irritation was observed. None of the investigational medicinal products showed pyrogenicity.

CONCLUSIONS. The obtained preclinical results demonstrate the safety of antineoplastic agents based on live non-pathogenic LEV4, LEV7, LEV8, LEV14, and Russo enteroviruses.

About the Authors

K. V. Sivak
Smorodintsev Research Institute of Influenza
Russian Federation

Konstantin V. Sivak, Dr. Sci. (Biol.)

15/17 Professor Popov St., St Petersburg 197376



K. I. Stosman
Smorodintsev Research Institute of Influenza
Russian Federation

Kira I. Stosman, Cand. Sci. (Biol.)

15/17 Professor Popov St., St Petersburg 197376



E. Yu. Kalinina
Smorodintsev Research Institute of Influenza
Russian Federation

Elena Yu. Kalinina, Cand. Sci. (Med.)

15/17 Professor Popov St., St Petersburg 197376



M. M. Lyubishin
Smorodintsev Research Institute of Influenza
Russian Federation

Mikhail M. Lyubishin, Cand. Sci. (Biol.)

15/17 Professor Popov St., St Petersburg 197376



Ya. R. Orshanskaya
Smorodintsev Research Institute of Influenza
Russian Federation

Yana R. Orshanskaya

15/17 Professor Popov St., St Petersburg 197376



T. N. Savateeva-Lyubimova
Smorodintsev Research Institute of Influenza
Russian Federation

Tatiana N. Savateeva-Lyubimova, Dr. Sci. (Med.), Professor

15/17 Professor Popov St., St Petersburg 197376



S. B. Kazakova
Smorodintsev Research Institute of Influenza
Russian Federation

Svetlana B. Kazakova, Cand. Sci. (Biol.) 

15/17 Professor Popov St., St Petersburg 197376



D. M. Fedoseeva
Centre for Strategic Planning and Management of Biomedical Health Risks
Russian Federation

Daria M. Fedoseeva, Cand. Sci. (Biol.)

10/1 Pogodinskaya St., Moscow 119121



A. S. Nazarov
Centre for Strategic Planning and Management of Biomedical Health Risks
Russian Federation

Anton S. Nazarov, Cand. Sci. (Chim.) 

10/1 Pogodinskaya St., Moscow 119121



E. I. Radion
Centre for Strategic Planning and Management of Biomedical Health Risks
Russian Federation

Elizaveta I. Radion, Cand. Sci. (Biol.)

10/1 Pogodinskaya St., Moscow 119121



S. M. Yudin
Centre for Strategic Planning and Management of Biomedical Health Risks
Russian Federation

Sergey M. Yudin, Dr. Sci. (Med.)

10/1 Pogodinskaya St., Moscow 119121



A. A. Keskinov
Centre for Strategic Planning and Management of Biomedical Health Risks
Russian Federation

Аnton А. Keskinov, Cand. Sci. (Med.)

10/1 Pogodinskaya St., Moscow 119121



V. V. Makarov
Centre for Strategic Planning and Management of Biomedical Health Risks
Russian Federation

Valentin V. Makarov, Cand. Sci. (Biol.) 

10/1 Pogodinskaya St., Moscow 119121



V. S. Yudin
Centre for Strategic Planning and Management of Biomedical Health Risks
Russian Federation

Vladimir S. Yudin, Cand. Sci. (Biol.)

10/1 Pogodinskaya St., Moscow 119121



A. O. Zheltukhin
Engelhardt Institute of Molecular Biology
Russian Federation

Andrei O. Zheltukhin, Cand. Sci. (Biol.) 

32 Vavilov St., Moscow 119991



P. O. Vorobyev
Engelhardt Institute of Molecular Biology
Russian Federation

Pavel O. Vorobyev, Cand. Sci. (Biol.)

32 Vavilov St., Moscow 119991



D. V. Kochetkov
Engelhardt Institute of Molecular Biology
Russian Federation

Dmitry V. Kochetkov, Cand. Sci. (Biol.) 

32 Vavilov St., Moscow 119991



G. V. Ilyinskaya
Engelhardt Institute of Molecular Biology
Russian Federation

Galina V. Ilyinskaya, Cand. Sci. (Biol.)

32 Vavilov St., Moscow 119991



A. V. Lipatova
Engelhardt Institute of Molecular Biology
Russian Federation

Anastasia V. Lipatova, Cand. Sci. (Biol.) 

32 Vavilov St., Moscow 119991



P. M. Chumakov
Engelhardt Institute of Molecular Biology
Russian Federation

Peter M. Chumakov, Corresponding Member of the Russian Academy of Sciences, Dr. Sci. (Biol.), Professor

32 Vavilov St., Moscow 119991



References

1. Glukhov AI, Sivokhin DA, Seriak DA, Rodionova TS, Kamynina MI. Oncolytic viruses as immunotherapeutic agents for the treatment of malignant tumors. Annals of the Russian Academy of Medical Sciences. 2019;74(2):108–17 (In Russ.). https://doi.org/10.15690/vramn1091

2. de la Nava D, Selvi KM, Alonso MM. Immunovirotherapy for pediatric solid tumors: a promising treatment that is becoming a reality. Front Immunol. 2022;13:866892. https://doi.org/10.3389/fimmu.2022.866892

3. Vorobjеva IV, Zhirnov OP. Modern approaches to treating cancer with oncolytic viruses. Microbiology Independent Research Journal. 2022;9(1):91–112 (In Russ.). https://doi.org/10.18527/2500-2236-2022-9-1-91-112

4. Cherniakova AP, Borozdina SA. Mechanisms and clinical effects of drugs based on oncolytic adenoviruses, herpes viruses, reoviruses and measles virus. Juvenis Scientia. 2020;6(6):6–17 (In Russ.). https://doi.org/10.32415/jscientia_2020_6_6_6-17

5. Lin D, Shen Y, Liang T. Oncolytic virotherapy: basic principles, recent advances and future directions. Signal TranSDuct Target Ther. 2023;8(1):156. https://doi.org/10.1038/s41392-023-01407-6

6. Yang L, Gu X, Yu J, Ge Sh, Fan X. Oncolytic virotherapy: from bench to bedside front. Cell Dev Biol. 2021;9:790150. https://doi.org/10.3389/fcell.2021.790150

7. Ramelyte E, Tastanova A, Balázs Z, Ignatova D, Turko P, Menzel U, et al. Oncolytic virotherapy-mediated anti-tumor response: a single-cell perspective. Cancer Cell. 2021;39(3):394–406.e4. https://doi.org/10.1016/j.ccell.2020.12.022

8. Russell SJ, Bell JC, Engeland CE, McFadden G. Advances in oncolytic virotherapy. Commun Med (Lond). 2022;2:33. https://doi.org/10.1038/s43856-022-00098-4

9. Chumakov PM. Could oncolytic viruses provide a breakthrough in oncology? Herald of the Russian Academy of Sciences. 2019;89(5):475–84 (In Russ.). https://doi.org/10.31857/S0869-5873895475-484

10. Shalhout SZ, Miller DM, Emerick KS, Kaufman HL. Therapy with oncolytic viruses: progress and challenges. Nat Rev Clin Oncol. 2023;20(3):160–77. https://doi.org/10.1038/s41571-022-00719-w

11. Rahman MM, McFadden G. Oncolytic viruses: newest frontier for cancer immunotherapy. Cancers (Basel). 2021;13(21):5452. https://doi.org/10.3390/cancers13215452

12. Bommareddy PK, Shettigar M, Kaufman HL. Integrating oncolytic viruses in combination cancer immunotherapy. Nat Rev Immunol. 2018;18(8):498–513. https://doi.org/10.1038/s41577-018-0014-6

13. Malogolovkin A, Gasanov N, Egorov A, Weener M, Ivanov R, Karabelsky A. Combinatorial approaches for cancer treatment using oncolytic viruses: projecting the perspectives through clinical trials outcomes. Viruses. 2021;13:1271. https://doi.org/10.3390/v13071271

14. McCarthy C, Jayawardena N, Burga LN, Bostina M. Developing picornaviruses for cancer therapy. Cancers. 2019;11:685. https://doi.org/10.3390/cancers11050685

15. Lea TH, Lipatova AV, Volskaya MA, Tikhonova OA, Chumakov PM. The state of the JAK/STAT signaling pathway affects the sensitivity of tumor cells to oncolytic enteroviruses. Molecular Biology. 2020;54(4):634–42 (In Russ.). https://doi.org/10.31857/S0026898420040102

16. Voroshilova MK. Human enterovirus infections. Moscow: Meditsina; 1979 (In Russ.).

17. Chumakov MF, Voroshilova MK, Antsupova AS, Boiko VM, Blinova MI, Priimiagi LS, et al. Live enterovirus vaccines for emergency prophylaxis of mass respiratory diseases during fall and winter epidemics of influenza and acute respiratory diseases. Journal of Microbiology, Epidemiology and Immunobiology. 1992;69(11–12):37–40 (In Russ.). EDN: ZXJVLF

18. Netyosov SV, Kochneva GV, Loktev VB, Svyatchenko VA, Sergeev AN, Ternovoj VA, et al. Oncolytic viruses: advances and challenges. Medical Alphabet. Epidemiology and Sanitation. 2011;(3):26–33 (In Russ.). EDN: OXGJHP

19. Voroshilova MK. Virologic and immunologic aspects of LEV use in cancer. In: Non-pathogenic strains of enteroviruses beneficial to health: prophylactic and therapeutic application. Moscow: Publishing house of the USSR Ministry of Health; 1988. P. 24–9 (In Russ.).

20. Chumakov PM, Morozova BB, Babkin IV, Baikov IK, Netesov SV, Tikunova NV. Oncolytic enteroviruses. Molecular Biology. 2012;46(5):712–25 (In Russ.). https://doi.org/10.1134/S0026893312050032

21. Klaan NK, Akin’shina LP, Pronina TA. Oncolytical viruses in the therapy of malignant neoplastic diseases. Russian Journal of Biotherapy. 2018;17(4):6–19 (In Russ.). https://doi.org/10.17650/1726-9784-2018-17-4-6-19

22. Chiu M, Armstrong EJL, Jennings V, Foo S, Crespo-Rodriguez E, Bozhanova G, et al. Combination therapy with oncolytic viruses and immune checkpoint inhibitors. Expert Opin Biol Ther. 2020;20(6):635–52. https://doi.org/10.1080/14712598.2020.1729351

23. Martin NT, Bell JC. Oncolytic virus combination therapy: killing one bird with two stones. Mol Ther. 2018;26(6):1414–22. https://doi.org/10.1016/j.ymthe.2018.04.001

24. Ghonime MG, Cassady KA. Combination therapy using ruxolitinib and oncolytic HSV renders resistant MPNSTs susceptible to virotherapy. Cancer Immunol Res. 2018;6(12):1499–510. https://doi.org/10.1158/2326-6066

25. Tanaka R, Goshima F, Esaki S, Sato Y, Murata T, Nishiyama Y, et al. The efficacy of combination therapy with oncolytic herpes simplex virus HF10 and dacarbazine in a mouse melanoma model. Am J Cancer Res. 2017;7(8):1693–703. PMID: 28861325

26. O’Donoghue C, Doepker MP, Zager JS. Talimogene laherparepvec: overview, combination therapy and current practices. Melanoma Manag. 2016;3(4):267–72. https://doi.org/10.2217/mmt-2016-002

27. Zhang S, ed. Progress in cancer immunotherapy. Springer; 2016. https://doi.org/10.1007/978-94-017-7555-7

28. Chiocca EA, Rabkin SD. Oncolytic viruses and their application to cancer immunotherapy. Cancer Immunol Res. 2014;2(4):295–300. https://doi.org/10.1158/2326-6066.CIR-14-0015

29. Shakiba Y, Vorobyev PO, Mahmoud M, Hamad A, Kochetkov DV, Yusubalieva GM, et al. Recombinant strains of oncolytic vaccinia virus for cancer immunotherapy. Biochemistry (Mosc). 2023;88(6):823–41. https://doi.org/10.1134/S000629792306010X

30. Lal G, Rajala MS. Recombinant viruses with other anti-cancer therapeutics: a step towards advancement of oncolytic virotherapy. Cancer Gene Ther. 2018;25(9–10):216–26. https://doi.org/10.1038/s41417-018-0018-1

31. Gromeier M, Nair SK. Recombinant poliovirus for cancer immunotherapy. Annu Rev Med. 2018;69:289–99. https://doi.org/10.1146/annurev-med-050715-104655

32. Voroshilova MK. Interferon-producing enterovirus vaccines (Live enterovirus vaccines, their interfering and interferonogenic activity and their use for prophylaxis of enteroviral and respiratory infections). Crit Rev Clin Lab Sci. 1970;117–8.

33. Voroshilova MK. Potential use of nonpathogenic enteroviruses for control of human disease. Prog Med Virol. 1989;36:191–202. PMID: 2555836

34. Voroshilova MK, Magazanik SS, Chumakov PM. Useful human viruses. Actual questions of epidemiology, microbiology and infectious diseases. Tashkent: Meditsina; 1980 (In Russ.).

35. Gromeier M, Alexander L, Wimmer E. Internal ribosomal entry site substitution eliminates neurovirulence in intergeneric poliovirus recombinants. Proc Natl Acad Sci USA. 1996;93(6):2370–5. https://doi.org/10.1073/pnas.93.6.2370

36. Gromeier M, Lachmann S, Rosenfeld MR, Gutin PH, Wimmer E. Intergeneric poliovirus recombinants for the treatment of malignant glioma. Proc Natl Acad Sci USA. 2000;97(12):6803–8. . https://doi.org/10.1073/pnas.97.12.6803

37. Soboleva AV, Seryak DA, Gabdrakhmanova AF, Sosnovtseva AO, Le TH, Kochetkov DV, et al. Glioblastoma multiforme stem cells are highly sensitive to some human non-pathogenic enteroviruses. J Pharm Sci Res. 2018:10(4):936–9. https://doi.org/10.5281/zenodo.1285619

38. Lawler SE, Speranza MC, Cho CF, Chiocca EA. Oncolytic viruses in cancer treatment: a review. JAMA Oncol. 2017;3(6):841–49. https://doi.org/10.1001/jamaoncol.2016.2064

39. Pol J, Buque A, Aranda F, Bloy N, Cremer I, Eggermont A, et al. Trial watch — oncolytic viruses and cancer therapy. Oncoimmunology. 2016;5(2):e1117740. https://doi.org/10.1080/2162402x.2015.1117740

40. Warner SG, O’Leary MP, Fong Y. Therapeutic oncolytic viruses: clinical advances and future directions. Curr Opin Oncol. 2017;29(5):359–65. https://doi.org/10.1097/cco.0000000000000388

41. Jia Y, Miyamoto S, Soda Y, Takishima Y, Sagara M, Liao J, et al. Extremely low organ toxicity and strong antitumor activity of miR-34-regulated oncolytic coxsackievirus B3. Mol Ther Oncolytics. 2019;12:246–58. https://doi.org/10.1016/j.omto.2019.01.003

42. Sakamoto A, Inoue H, Miyamoto S, Ito S, Soda Y, Tani K. Coxsackievirus A11 is an immunostimulatory oncolytic virus that induces complete tumor regression in a human non-small cell lung cancer. Sci Rep. 2023;13(1):5924. https://doi.org/10.1038/s41598-023-33126-x

43. Lin D, Shen Y, Liang T. Oncolytic virotherapy: basic principles, recent advances and future directions. Signal TranSDuct Target Ther. 2023;8(1):156. https://doi.org/10.1038/s41392-023-01407-6


Supplementary files

Review

For citations:


Sivak K.V., Stosman K.I., Kalinina E.Yu., Lyubishin M.M., Orshanskaya Ya.R., Savateeva-Lyubimova T.N., Kazakova S.B., Fedoseeva D.M., Nazarov A.S., Radion E.I., Yudin S.M., Keskinov A.A., Makarov V.V., Yudin V.S., Zheltukhin A.O., Vorobyev P.O., Kochetkov D.V., Ilyinskaya G.V., Lipatova A.V., Chumakov P.M. Preclinical Safety Assessment of Antineoplastic Agents Based on Live Non-Pathogenic Enteroviruses. Safety and Risk of Pharmacotherapy. 2024;12(4):444-462. (In Russ.) https://doi.org/10.30895/2312-7821-2024-415

Views: 1673


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2312-7821 (Print)
ISSN 2619-1164 (Online)