Preview

Safety and Risk of Pharmacotherapy

Advanced search

Cardiovascular Safety Assessment of Medicines in Preclinical In vivo Studies: A Review

https://doi.org/10.30895/2312-7821-2025-475

Abstract

INTRODUCTION. The cardiovascular safety evaluation of medicines using in vivo models is a necessary preclinical step that is performed either in safety pharmacology studies or in toxicity studies. The design of safety pharmacology studies primarily involves assessing the potential of a test substance to prolong cardiac ventricular repolarisation, without in-depth investigation of potential structural damage to the heart and blood vessels. Toxicity studies usually do not include electrophysiological testing. The regulatory standards of the Eurasian Economic Union (EAEU) and the International Council for Harmonisation (ICH) lack detailed guidance on the use of specific markers of cardiovascular dysfunction.

AIM. This study aimed to develop an integrated approach to assessing the cardiac and vascular toxicity of medicinal products in preclinical in vivo studies.

DISCUSSION. Cardiovascular function can be assessed in both small laboratory animals (rodents) and larger animals, such as rabbits, ferrets, dogs, minipigs, and primates. The toxic effects of a test medicinal product on the cardiovascular system of animals may be manifested as physiological, biochemical, and structural changes in the systems and organs. Therefore, the assessment of cardiovascular function should be based on a combination of instrumental, laboratory, and histological methods. First of all, physiological and laboratory studies are applicable. It is recommended to perform electrocardiography, heart rate and blood pressure measurements, and quantification of markers of cardiovascular dysfunction and structural cell damage. For more in-depth analysis, histological and immunohistochemical studies of cardiac and vascular tissues are recommended to assess changes at the tissue and cellular levels.

CONCLUSIONS. An effective strategy for detecting cardiovascular disorders is the use of an integrated approach that, on the one hand, facilitates a comprehensive assessment of the possible toxic effects of a medicinal product and, on the other hand, increases the translational potential of the data obtained at the preclinical stage of research.

About the Authors

K. T. Sultanova
Research-and-manufacturing company “HOME OF PHARMACY”
Russian Federation

Kira T. Sultanova, Cand. Sci. (Med.)

3/245 Zavodskaya St., Kuzmolovsky urban-type settlement, Vsevolozhsky district, Leningrad Region 188663



M. V. Miroshnikov
Research-and-manufacturing company “HOME OF PHARMACY”
Russian Federation

Mihail V. Miroshnikov, Cand. Sci. (Med.)

3/245 Zavodskaya St., Kuzmolovsky urban-type settlement, Vsevolozhsky district, Leningrad Region 188663



A. Yu. Borodina
Research-and-manufacturing company “HOME OF PHARMACY”
Russian Federation

Antonina Yu. Borodina

3/245 Zavodskaya St., Kuzmolovsky urban-type settlement, Vsevolozhsky district, Leningrad Region 188663



E. V. Simonova
Research-and-manufacturing company “HOME OF PHARMACY”
Russian Federation

Elizaveta V. Simonova

3/245 Zavodskaya St., Kuzmolovsky urban-type settlement, Vsevolozhsky district, Leningrad Region 188663



Zh. Yu. Ustenko
Research-and-manufacturing company “HOME OF PHARMACY”
Russian Federation

Zhanna Yu. Ustenko, Cand. Sci. (Vet.)

3/245 Zavodskaya St., Kuzmolovsky urban-type settlement, Vsevolozhsky district, Leningrad Region 188663



E. V. Mazukina
Research-and-manufacturing company “HOME OF PHARMACY”
Russian Federation

Elizaveta V. Mazukina

3/245 Zavodskaya St., Kuzmolovsky urban-type settlement, Vsevolozhsky district, Leningrad Region 188663



K. L. Kryshen
Research-and-manufacturing company “HOME OF PHARMACY”
Russian Federation

Kirill L. Kryshen, Cand. Sci. (Biol.)

3/245 Zavodskaya St., Kuzmolovsky urban-type settlement, Vsevolozhsky district, Leningrad Region 188663



A. A. Matichin
Research-and-manufacturing company “HOME OF PHARMACY”
Russian Federation

Aleksandr A. Matichin

3/245 Zavodskaya St., Kuzmolovsky urban-type settlement, Vsevolozhsky district, Leningrad Region 188663



M. N. Makarova
Research-and-manufacturing company “HOME OF PHARMACY”
Russian Federation

Marina N. Makarova, Dr. Sci. (Med.)

3/245 Zavodskaya St., Kuzmolovsky urban-type settlement, Vsevolozhsky district, Leningrad Region 188663



V. G. Makarov
Research-and-manufacturing company “HOME OF PHARMACY”
Russian Federation

Valery G. Makarov, Dr. Sci. (Med.), Professor

3/245 Zavodskaya St., Kuzmolovsky urban-type settlement, Vsevolozhsky district, Leningrad Region 188663



References

1. Mladěnka P, Applová L, Patočka J, Costa VM, Remiao F, Pourová J. Comprehensive review of cardiovascular toxicity of drugs and related agents. Med Res Rev. 2018;38(4):1332–403. https://doi.org/10.1002/med.21476

2. Guth BD. Preclinical cardiovascular risk assessment in modern drug development. Toxicol Sci. 2007;97(1):4–20. https://doi.org/10.1093/toxsci/kfm026

3. Sanguinetti MC, Tristani-Firouzi M. hERG potassium channels and cardiac arrhythmia. Nature. 2006;440(7083):463–9. https://doi.org/10.1038/nature04710

4. Gralinski MR. The dog’s role in the preclinical assessment of QT interval prolongation. Toxicol Pathol. 2003;31(Suppl):11–6. https://doi.org/10.1080/0192623039017488

5. Heyen JR, Vargas HM. The use of nonhuman primates in cardiovascular safety assessment. In: Bluemel J, Schenck E, Korte S, Weinbauer GF, eds. The nonhuman primate in nonclinical drug development and safety assessment. Academic Press; 2015. P. 551–78. https://doi.org/10.1016/B978-0-12-417144-2.00029-9

6. Engalycheva GN, Syubaev RD, Goryachev DV. Safety pharmacology studies of medicinal products: Evaluation of results. Bulletin of the Scientific Centre for Expert Evaluation of Medicinal Products. 2017;7(2):92–7 (In Russ.). EDN: YSDMLV

7. Sarazan RD, Mittelstadt S, Guth B, Koerner J, Zhang J, Pettit S. Cardiovascular function in nonclinical drug safety assessment: Current issues and opportunities. Int J Toxicol. 2011;30(3):272–86. https://doi.org/10.1177/1091581811398963

8. Ross RA, Foley CM, Jones HM, Osinski MA. A method for assessing and monitoring consistency of nonclinical ECG analysis. J Pharmacol Toxicol Methods. 2022;116:107189. https://doi.org/10.1016/j.vascn.2022.107189

9. Ewart L, Milne A, Adkins D, Benjamin A, Bialecki R, Chen Y, et al. A multi-site comparison of in vivo safety pharmacology studies conducted to support ICH S7A & B regulatory submissions. J Pharmacol Toxicol Methods. 2013;68(1):30–43. https://doi.org/10.1016/j.vascn.2013.04.008

10. Arini PD, Liberczuk S, Mendieta JG, Santa María M, Bertrán GC. Electrocardiogram delineation in a Wistar rat experimental model. Comput Math Methods Med. 2018;2018(1):2185378. https://doi.org/10.1155/2018/2185378

11. Authier S, Pugsley MK, Troncy E, Curtis MJ. Arrhythmogenic liability screening in cardiovascular safety pharmacology: Commonality between non-clinical safety pharmacology and clinical thorough QT (TQT) studies. J Pharmacol Toxicol Methods. 2010;62(2):83–8. https://doi.org/10.1016/j.vascn.2010.06.005

12. Mavropoulou A, Oliveira P, Willis R. Holter monitoring in dogs: 24 h vs. 48 h. Vet J. 2021;272:105628. https://doi.org/10.1016/j.tvjl.2021.105628

13. Lyhne MK, Debes KP, Helgogaard T, Vegge A, Kildegaard J, Pedersen-Bjergaard U, et al. Electrocardiography and heart rate variability in Göttingen minipigs: Impact of diurnal variation, lead placement, repeatability and streptozotocin-induced diabetes. J Pharmacol Toxicol Methods. 2022;118:107221. https://doi.org/10.1016/j.vascn.2022.107221

14. Nakayama S, Koie H, Kato-Tateishi M, Pai C, Ito-Fujishiro Y, Kanayama K, et al. Establishment of a new formula for QT interval correction using a large colony of cynomolgus monkeys. Exp Anim. 2020;69(1):18–25. https://doi.org/10.1538/expanim.19-0009

15. Kahankova R, Kolarik J, Brablik J, Barnova K, Simkova I, Martinek R. Alternative measurement systems for recording cardiac activity in animals: A pilot study. Animal Biotelemetry. 2022;10(1):15. https://doi.org/10.1186/s40317-022-00286-y

16. Skelding A, Valverde A. Non-invasive blood pressure measurement in animals: Part 1 — techniques for measurement and validation of non-invasive devices. Can Vet J. 2020;61(4):368–74. PMID: 32255821

17. Wang Y, Thatcher SE, Cassis LA. Measuring blood pressure using a noninvasive tail cuff method in mice. Methods Mol Biol. 2017;1614:69–73. https://doi.org/10.1007/978-1-4939-7030-8_6

18. Tuohy PP, Raisis AL, Drynan EA. Agreement of invasive and non-invasive blood pressure measurements in anaesthetised pigs using the SurgiVet V9203. Res Vet Sci. 2017;115:250–4. https://doi.org/10.1016/j.rvsc.2017.05.022

19. Terzi OS, Toksöz C, Akbaba M, Emrealp G. The use of two dimensional speckle tracking echocardiography in veterinary cardiology. Atatürk Üniv Vet Bilim Derg. 2021;16(2):176–81. https://doi.org/10.17094/ataunivbd.828343

20. Kim K, Chini N, Fairchild DG, Engle SK, Reagan WJ, Summers SD, et al. Evaluation of cardiac toxicity biomarkers in rats from different laboratories. Toxicol Pathol. 2016;44(8):1072–83. https://doi.org/10.1177/0192623316668276

21. Oyama MA. Using cardiac biomarkers in veterinary practice. Clin Lab Med. 2015;35(3):555–66. https://doi.org/10.1016/j.cll.2015.05.005

22. Walker DB. Serum chemical biomarkers of cardiac injury for non-clinical safety testing. Toxicol Pathol. 2006;34(1):94–104. https://doi.org/10.1080/01926230500519816

23. Wang Z, Raunser S. Structural biochemistry of muscle contraction. Annu Rev Biochem. 2023;92(1):411–33. https://doi.org/10.1146/annurev-biochem-052521-042909

24. O’Brien PJ, Reagan WJ, York MJ, Jacobsen MC. Review of qualification data for cardiac troponins. FDA, CDER; 2011.

25. Pan DS, Li B, Wang SL. Evaluation of biomarkers for doxorubicin-induced cardiac injury in rats. Exp Ther Med. 2022;24(6):1–13. https://doi.org/10.3892/etm.2022.11648

26. York M, Scudamore C, Brady S, Chen C, Wilson S, Curtis MJ, et al. Characterization of troponin responses in isoproterenol-induced cardiac injury in the Hanover Wistar rat. Toxicol Pathol. 2007;35(4):606–17. https://doi.org/10.1080/01926230701389316

27. Clements P, Brady S, York M, Berridge B, Mikaelian I, Nicklaus R, et al. Time course characterization of serum cardiac troponins, heart fatty acid–binding protein, and morphologic findings with isoproterenol-induced myocardial injury in the rat. Toxicol Pathol. 2010;38(5):703–14. https://doi.org/10.1177/0192623310374969

28. O’Brien PJ. Blood cardiac troponin in toxic myocardial injury: Archetype of a translational safety biomarker. Expert Rev Mol Diagn. 2006;6(5):685–702. https://doi.org/10.1586/14737159.6.5.685

29. Reagan WJ, Barnes R, Harris P, Summers S, Lopes S, Stubbs M, et al. Assessment of cardiac troponin I responses in nonhuman primates during restraint, blood collection, and dosing in preclinical safety studies. Toxicol Pathol. 2017;45(2):335–43. https://doi.org/10.1177/0192623316663865

30. Apple FS, Murakami MM, Ler R, Walker D, York M; HESI Technical Committee of Biomarkers Working Group on Cardiac Troponins. Analytical characteristics of commercial cardiac troponin I and T immunoassays in serum from rats, dogs, and monkeys with induced acute myocardial injury. Clin Chem. 2008;54(12):1982–9. https://doi.org/10.1373/clinchem.2007.097568

31. Muslimovic A, Fridén V, Tenstad O, Starnberg K, Nyström S, Wesén E, et al. The liver and kidneys mediate clearance of cardiac troponin in the rat. Sci Rep. 2020;10(1):6791. https://doi.org/10.1038/s41598-020-63744-8

32. Alhadi HA, Fox KA. Do we need additional markers of myocyte necrosis: The potential value of heart fatty-acid-binding protein. QJM. 2004;97(4):187–98. https://doi.org/10.1093/qjmed/hch037

33. O’Brien PJ, Smith DE, Knechtel TJ, Marchak MA, Pruimboom-Brees I, Brees DJ, et al. Cardiac troponin I is a sensitive, specific biomarker of cardiac injury in laboratory animals. Lab Anim. 2006;40(2):153–71. https://doi.org/10.1258/002367706776319042

34. Gavazza A, Fruganti A, Turinelli V, Marchegiani A, Spaterna A, Tesei B, et al. Canine traditional laboratory tests and cardiac biomarkers. Front Vet Sci. 2020;7:320. https://doi.org/10.3389/fvets.2020.00320

35. Klein R, Nagy O, Tóthová C, Chovanova F. Clinical and diagnostic significance of lactate dehydrogenase and its isoenzymes in animals. Vet Med Int. 2020;2020:5346483. https://doi.org/10.1155/2020/5346483

36. Kolmanova E, Bartosova L, Khazneh E, Parak T, Suchy P. Comparison of the specificity of cardiac troponin I and creatine kinase MB in isoproterenol-induced cardiotoxicity model in rats. Acta Veterinaria Brno. 2015;84(4):343–50. https://doi.org/10.2754/avb201584040343

37. Dunn ME, Manfredi TG, Agostinucci K, Engle SK, Powe J, King NM, et al. Serum natriuretic peptides as differential biomarkers allowing for the distinction between physiologic and pathologic left ventricular hypertrophy. Toxicol Pathol. 2017;45(2):344–52. https://doi.org/10.1177/0192623316634231

38. Aulbach AD, Amuzie CJ. Biomarkers in nonclinical drug development. In: Faqi AS, ed. A comprehensive guide to toxicology in nonclinical drug development. Academic Press; 2024. P. 463–87. https://doi.org/10.1016/B978-0-323-85704-8.00035-9

39. Tümer KÇ, Özdemİr H, Eröksüz H. Evaluation of cardiac troponin I in serum and myocardium of rabbits with experimentally induced polymicrobial sepsis. Exp Anim. 2020;69(1):54–61. https://doi.org/10.1538/expanim.19-0046

40. Tonomura Y, Mori Y, Torii M, Uehara T. Evaluation of the usefulness of biomarkers for cardiac and skeletal myotoxicity in rats. Toxicology. 2009;266(1–3):48–54. https://doi.org/10.1016/j.tox.2009.10.014

41. Engle SK, Jordan WH, Pritt ML, Chiang AY, Davis MA, Zimmermann JL, et al. Qualification of cardiac troponin I concentration in mouse serum using isoproterenol and implementation in pharmacology studies to accelerate drug development. Toxicol Pathol. 2009;37(5):617–28. https://doi.org/10.1177/0192623309339502

42. Brady SM. The assessment of cardiac biomarkers in rat models of cardiotoxicity. London: University of London; 2008.

43. Dunn ME, Coluccio D, Hirkaler G, Mikaelian I, Nicklaus R, Lipshultz SE, et al. The complete pharmacokinetic profile of serum cardiac troponin I in the rat and the dog. Toxicol Sci. 2011;123(2):368–73. https://doi.org/10.1093/toxsci/kfr190

44. Minomo H, Torikai Y, Furukawa T, Uchino H, Kadokura H, Nakama K, et al. Characteristics of troponins as myocardial damage biomarkers in cynomolgus monkeys. J Toxicol Sci. 2009;34(6):589–601. https://doi.org/10.2131/jts.34.589

45. Bendjama K, Guionaud S, Aras G, Arber N, Badimon L, Bamberger U, et al. Translation strategy for the qualification of drug-induced vascular injury biomarkers. Toxicol Pathol. 2014;42(4):658–71. https://doi.org/10.1177/0192623314527644

46. Sauer J-M, Walker EG, Porter AC. The predictive safety testing consortium: Safety biomarkers, collaboration, and qualification. J Med Dev Sci. 2016;1(1):34–45. https://doi.org/10.18063/jmds.2015.01.007

47. McInnes E, ed. Pathology for toxicologists: Principles and practices of laboratory animal pathology for study personnel. Chichester: John Wiley & Sons; 2017.

48. Reagan WJ, York M, Berridge B, Schultze E, Walker D, Pettit S. Comparison of cardiac troponin I and T, including the evaluation of an ultrasensitive assay, as indicators of doxorubicin-induced cardiotoxicity. Toxicol Pathol. 2013;41(8):1146–58. https://doi.org/10.1177/0192623313482056

49. Lugovik IA, Makarova MN. Toxicological studies. Reference intervals of mass coefficients of internal organs in a sample of 1000 rats. Laboratory Animals for Science. 2021;(1):3–11 (In Russ.). https://doi.org/10.29296/2618723X-2021-01-01

50. Roshchina EA. Reference intervals of rabbits organs mass coefficients and absolute weight. Laboratory Animals for Science. 2022;(1):34–42 (In Russ.). https://doi.org/10.29296/2618723X-2022-01-05

51. Borodina AYu. Reference intervals of mass coefficients of internal organs of guinea pigs. Laboratory Animals for Science. 2023;(3):68–73 (In Russ.). https://doi.org/10.57034/2618723X-2023-03-05

52. Borodina AYu, Sultanova KT. Reference intervals of mass coefficients of internal organs of ferret and their absolute values. Bulletin of Veterinary Pharmacology. 2024;(2):8–20 (In Russ.). https://doi.org/10.17238/issn2541-8203.2024.2.8

53. Simonova EV, Savvateikina AI, Sultanova KT, Makarova MN, Mazukina EV. Reference intervals of mass coefficients and absolute weight of mini pigs’ organs. Russian Journal of Veterinary Pathology. 2024;23(2):41–50 (In Russ.). https://doi.org/10.23947/2949-4826-2024-23-2-41-50

54. Simonova EV, Sultanova KT. Reference intervals of mass coefficients of internal organs of hamster organs and their absolute values. Laboratory Animals for Science. 2024;(2):66–72 (In Russ.). https://doi.org/10.57034/2618723X-2024-02-06

55. Jokinen MP, Lieuallen WG, Boyle MC, Johnson CL, Malarkey DE, Nyska A. Morphologic aspects of rodent cardiotoxicity in a retrospective evaluation of National Toxicology Program studies. Toxicol Pathol. 2011;39(5):850–60. https://doi.org/10.1177/0192623311413788

56. Keenan CM, Vidal JD. Standard morphologic evaluation of the heart in the laboratory dog and monkey. Toxicol Pathol. 2006;34(1):67–74. https://doi.org/10.1080/01926230500369915

57. Constantin I, Tăbăran AF. Dissection techniques and histological sampling of the heart in large animal models for cardiovascular diseases. J Vis Exp. 2022;(184):e63809. https://doi.org/10.3791/63809

58. Morawietz G, Ruehl-Fehlert C, Kittel B, Bube A, Keane K, Halm S, et al. Revised guides for organ sampling and trimming in rats and mice. Part 3. A joint publication of the RITA and NACAD groups. Exp Toxicol Pathol. 2004;55(6):433–49. https://doi.org/10.1078/0940-2993-00350

59. Gopinath C, Mowat V. Atlas of toxicological pathology. NY: Springer; 2014.

60. McKenzie WF, Alison R. Heart. In: Boorman GA, Eustis SL, Elwell MR, Montgomery Jr CA, MacKenzie WF, eds. Pathology of the Fischer rat: Reference and atlas. San Diego: Academic Press; 1990. P. 461–72.

61. Elwell MR, Mahler JF. Heart, blood vessels and lymphatic vessels. In: Maronpot RR, Boorman GA, Gaul BW, eds. Pathology of the mouse: Reference and atlas. Vienna: Cache River Press; 1999. P. 361–80.

62. Berridge BR, Van Vleet JF, Herman E, eds. Cardiac, vascular, and skeletal muscle systems. In: Haschek WM, Rousseaux CG, Wallig MA, eds. Haschek and Rousseaux’s handbook of toxicologic pathology. San Diego: Academic Press; 2013. P. 1567–665. https://doi.org/10.1016/B978-0-12-415759-0.00046-7

63. Johnson CL, Nyska A. Cardiovascular system — Heart. In: Cesta MF, Herbert RA, Brix A, Malarkey DE, Sills RC. The National Toxicology Program Web-based nonneoplastic lesion atlas: A global toxicology and pathology resource. https://ntp.niehs.nih.gov/nnl/hematopoietic/bone_marrow/fibrosis/index.htm

64. Takagawa J, Zhang Y, Wong ML, Sievers RE, Kapasi NK, Wang Y, et al. Myocardial infarct size measurement in the mouse chronic infarction model: Comparison of area-and length-based approaches. J Appl Physiol (1985). 2007;102(6):2104–11. https://doi.org/10.1152/japplphysiol.00033.2007

65. Csonka C, Kupai K, Kocsis GF, Novák G, Fekete V, Bencsik P, et al. Measurement of myocardial infarct size in preclinical studies. J Pharmacol Toxicol Methods. 2010;61(2):163–70. https://doi.org/10.1016/j.vascn.2010.02.014

66. Mikaelian, I, Cameron M, Dalmas DA, Enerson BE, Gonzalez RJ, Guionaud S, et al. Nonclinical safety biomarkers of drug-induced vascular injury: Current status and blueprint for the future. Toxicol Pathol. 2014;42(4):635–57. https://doi.org/10.1177/0192623314525686

67. Enerson BE, Lin A, Lu B, Zhao H, Lawton MP, Floyd E. Acute drug-induced vascular injury in beagle dogs: Pathology and correlating genomic expression. Toxicol Pathol. 2006;34(1):27–32. https://doi.org/10.1080/01926230500512068

68. Brott D, Gould S, Jones H, Schofield J, Prior H, Valentin JP, et al. Biomarkers of drug-induced vascular injury. Toxicol Appl Pharmacol. 2005;207(2):441–5. https://doi.org/10.1016/j.taap.2005.04.028

69. Brott DA, Richardson RJ, Louden CS. Evidence for the nitric oxide pathway as a potential mode of action in fenoldopam-induced vascular injury. Toxicol Pathol. 2012;40(6):874–86. https://doi.org/10.1177/019262331244402

70. Yang JJ, Jennette JC, Falk RJ. Immune complex glomerulonephritis is induced in rats immunized with heterologous myeloperoxidase. Clin Exp Immunol. 1994;97(3):466–73. https://doi.org/10.1111/j.1365-2249.1994.tb06111.x

71. Miller DL, Dou C, Sorenson D, Liu M. Histological observation of islet hemorrhage induced by diagnostic ultrasound with contrast agent in rat pancreas. PLoS One. 2011;6(6):e21617. https://doi.org/10.1371/journal.pone.0021617


Supplementary files

1. Figures 2–8
Subject
Type Исследовательские инструменты
Download (1MB)    
Indexing metadata ▾

Review

For citations:


Sultanova K.T., Miroshnikov M.V., Borodina A.Yu., Simonova E.V., Ustenko Zh.Yu., Mazukina E.V., Kryshen K.L., Matichin A.A., Makarova M.N., Makarov V.G. Cardiovascular Safety Assessment of Medicines in Preclinical In vivo Studies: A Review. Safety and Risk of Pharmacotherapy. (In Russ.) https://doi.org/10.30895/2312-7821-2025-475

Views: 417


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2312-7821 (Print)
ISSN 2619-1164 (Online)