Preview

Безопасность и риск фармакотерапии

Расширенный поиск

Текущие проблемы и будущие направления вакцинации против вируса папилломы человека (ВПЧ)

https://doi.org/10.30895/2312-7821-2020-8-3-141-150

Полный текст:

Аннотация

Рак шейки матки, вызываемый вирусом папилломы человека (ВПЧ) 16 и 18 типов, является одним из самых распространенных злокачественных новообразований у женщин. Другие высокоонкогенные типы вируса способствуют возникновению рака влагалища, вульвы, пениса, анального канала, злокачественных новообразований головы и шеи. Низкоонкогенные типы ВПЧ, такие как 6 и 11, могут быть причиной аногенитальных бородавок и папилломатоза верхних дыхательных путей. Эти заболевания возможно предотвратить с помощью вакцинации до инфицирования вирусом. Цель работы: систематизация актуальных данных по профилактике ВПЧ-ассоциированных заболеваний с помощью вакцинации. В настоящее время в мире зарегистрированы три вакцины против вируса папилломы человека — Церварикс®, Гардасил® и Гардасил®9. Обширные клинические и пострегистрационные исследования свидетельствуют о безопасности и высокой эффективности данных вакцин (до 100%) в отношении возникновения интраэпителиальных неоплазий шейки матки, вульвы и влагалища при введении их пациенткам, не инфицированным данными типами вируса ранее. Однако существует ряд нерешенных вопросов, стимулирующих проведение дальнейших клинических исследований по поиску универсальной вакцины. Прежде всего эффективность указанных вакцин ограничена включенными типами ВПЧ. Только в 2011 г. был поднят вопрос о необходимости вакцинации лиц мужского пола. Также периодически происходит пересмотр рекомендаций по кратности вакцинации вследствие появления новых результатов исследований иммуногенности вакцины. Снижение кратности иммунизации особенно актуально для развивающихся стран с ограниченными финансовыми ресурсами и высокой заболеваемостью раком шейки матки. Таким образом, для достижения элиминации ВПЧ во всем мире необходимо проведение глобальных программ вакцинации, в том числе оптимальных по доступности и кратности вакцинации для развивающихся стран, увеличение охвата вакцинацией по возрасту и полу, а также расширение программ скрининга в области онкологии.

Об авторах

О. С. Аляутдина
Федеральное государственное автономное образовательное учреждение высшего образования «Первый Московский государственный медицинский университет имени И. М. Сеченова» Министерства здравоохранения Российской Федерации
Россия

д-р мед. наук, профессор

ул. Трубецкая, д. 8, стр. 2, Москва, 119991



В. Ю. Прилуцкая
Федеральное государственное автономное образовательное учреждение высшего образования «Первый Московский государственный медицинский университет имени И. М. Сеченова» Министерства здравоохранения Российской Федерации
Россия

Scopus Author ID: 57203243192

ул. Трубецкая, д. 8, стр. 2, Москва, 119991



Список литературы

1. Castle PE, Fetterman B, Poitras N, Lorey T, Shaber R, Kinney W. Five-year experience of human papillomavirus DNA and Papanicolaou test cotesting. Obstet Gynecol. 2009;113(3):595–600. https://doi.org/10.1097/AOG.0b013e3181996ffa

2. Bruni L, Diaz M, Barrionuevo-Rosas L, Herrero R, Bray F, Bosch FX, et al. Global estimates of human papillomavirus vaccination coverage by region and income level: a pooled analysis. Lancet Glob Health. 2016;4(7):e453-63. https://doi.org/10.1016/S2214-109X(16)30099-7

3. Pinidis P, Tsikouras P, Iatrakis G, Zervoudis S, Koukouli Z, Bothou A, et al. Human papilloma virus' life cycle and carcinogenesis. Maedica (Buchar). 2016;11(1):48–54.

4. Tomar A, Kushwah A. Advances in human papilloma virus vaccines: a review. Int J Basic Clin Pharmacol. 2014;3(1):37–43. https://doi.org/10.5455/2319-2003.ijbcp20140237

5. Muñoz N, Bosch FX, de Sanjosé S, Herrero R, Castellsagué X, Shah KV, et al. Epidemiologic classification of human papillomavirus types associated with cervical cancer. N Engl J Med. 2003;348(6):518–27. https://doi.org/10.1056/nejmoa021641

6. Burley M, Roberts S, Parish JL. Epigenetic regulation of human papillomavirus transcription in the productive virus life cycle. Semin Immunopathol. 2020;42(2):159–171. https://doi.org/10.1007/s00281-019-00773-0

7. Pappa KI, Kontostathi G, Lygirou V, Zoidakis J, Anagnou NP. Novel structural approaches concerning HPV proteins: Insight into targeted therapies for cervical cancer (Review). Oncol Rep. 2018;39(4):1547–54. https://doi.org/10.3892/or.2018.6257

8. Harden ME, Munger K. Human papillomavirus molecular biology. Mutat Res Rev Mutat Res. 2017;772:3–12. https://doi.org/10.1016/j.mrrev.2016.07.002

9. Bristol ML, Das D, Morgan IM. Why human papillomaviruses activate the DNA damage response (DDR) and how cellular and viral replication persists in the presence of DDR signaling. Viruses. 2017;9(10):268. https://doi.org/10.3390/v9100268

10. Moody C. Mechanisms by which HPV induces a replication competent environment in differentiating keratinocytes. Viruses. 2017;9(9):261. https://doi.org/10.3390/v9090261

11. Giroglou T, Florin L, Schäfer F, Streeck RE, Sapp M. Human papillomavirus infection requires cell surface heparan sulfate. J Virol. 2001;75(3):1565–70. https://doi.org/10.1128/jvi.75.3.1565-1570.2001

12. Culp TD, Budgeon LR, Marinkovich MP, Meneguzzi G, Christensen ND. Keratinocyte-secreted laminin 5 can function as a transient receptor for human papillomaviruses by binding virions and transferring them to adjacent cells. J Virol. 2006;80(18):8940–50. https://doi.org/10.1128/jvi.00724-06

13. Smith JL, Campos SK, Ozbun MA. Human papillomavirus type 31 uses a caveolin 1- and dynamin 2-mediated entry pathway for infection of human keratinocytes. J Virol. 2007;81(18):9922–31. https://doi.org/10.1128/jvi.00988-07

14. Doorbar J, Griffin H. Intrabody strategies for the treatment of human papillomavirus-associated disease. Expert Opin Biol Ther. 2007;7(5):677–89. https://doi.org/10.1517/14712598.7.5.677

15. McKinney CC, Hussmann KL, McBride A. The role of the DNA damage response throughout the papillomavirus life cycle. Viruses. 2015;7(5):2450–69. https://doi.org/10.3390/v7052450

16. Stanley M. Prophylactic HPV vaccines: prospects for eliminating ano-genital cancer. Br J Cancer. 2007;96(9):1320–3. https://doi.org/10.1038/sj.bjc.6603695

17. Henley SA, Dick FA. The retinoblastoma family of proteins and their regulatory functions in the mammalian cell division cycle. Cell Div. 2012;7(1):10. https://doi.org/10.1186/1747-1028-7-10

18. Inoue K, Fry EA. Aberrant expression of p16INK4a in human cancers – a new biomarker? Cancer Rep Rev. 2018;2(2). https://doi.org/10.15761/CRR.1000145

19. Garima, Pandey S, Pandey LK, Saxena AK, Patel N. The role of p53 gene in cervical carcinogenesis. J Obstet Gynaecol India. 2016;66(Suppl 1):383–8. https://doi.org/10.1007/s13224-015-0754-1

20. Kirnbauer R, Hubbert NL, Wheeler CM, Becker TM, Lowy DR, Schiller JT. A virus-like particle enzyme-linked immunosorbent assay detects serum antibodies in a majority of women infected with human papillomavirus type 16. J Natl Cancer Inst. 1994;86(7):494–9. https://doi.org/10.1093/jnci/86.7.494

21. Gillison ML, Chaturvedi AK, Lowy DR. HPV prophylactic vaccines and the potential prevention of noncervical cancers in both men and women. Cancer. 2008;113(10 Suppl):3036–46. https://doi.org/10.1002/cncr.23764

22. Cimica V, Galarza JM. Adjuvant formulations for virus-like particle (VLP) based vaccines. Clin Immunol. 2017;183:99–108. https://doi.org/10.1016/j.clim.2017.08.004

23. Einstein MH, Baron M, Levin MJ, Chatterjee A, Edwards RP, Zepp F, et al. Comparison of the immunogenicity and safety of Cervarix™ and Gardasil® human papillomavirus (HPV) cervical cancer vaccines in healthy women aged 18–45 years. Hum Vaccin. 2009;5(10):705–19. https://doi.org/10.4161/hv.5.10.9518

24. Ogawa Y, Takei H, Ogawa R, Mihara K. Safety of human papillomavirus vaccines in healthy young women: a meta-analysis of 24 controlled studies. J Pharm Health Care Sci. 2017;3:18. https://doi.org/10.1186/s40780-017-0087-6

25. Phillips A, Patel C, Pillsbury A, Brotherton J, Macartney K. Safety of human papillomavirus vaccines: an updated review. Drug Saf. 2018;41(4):329–46. https://doi.org/10.1007/s40264-017-0625-z

26. Centers for Disease Control and Prevention (CDC). FDA licensure of quadrivalent human papillomavirus vaccine (HPV4, Gardasil) for use in males and guidance from the Advisory Committee on Immunization Practices (ACIP). MMWR Morb Mortal Wkly Rep. 2010;59(20):630–2.

27. Kardas-Nelson M. Vaccine uptake and prevalence of HPV related cancers in US men. BMJ. 2019;364:l1210. https://doi.org/10.1136/bmj.l1210

28. Sonawane K, Suk R, Chiao EY, Chhatwal J, Qiu P, Wilkin T, et al. Oral human papillomavirus infection: differences in prevalence between sexes and concordance with genital human papillomavirus infection, NHANES 2011 to 2014. Ann Intern Med. 2017;167(10):714–24. https://doi.org/10.7326/M17-1363

29. Artemchuk H, Eriksson T, Poljak M, Surcel HM, Dillner J, Lehtinen M, Faust H. Long-term antibody response to human papillomavirus vaccines: up to 12 years of follow-up in the Finnish maternity cohort. J Infect Dis. 2019;219(4):582–9. https://doi.org/10.1093/infdis/jiy545

30. Shimabukuro TT, Su JR, Marquez PL, Mba-Jonas A, Arana JE, Cano MV. Safety of the 9-valent human papillomavirus vaccine. Pediatrics. 2019;144(6):e20191791. https://doi.org/10.1542/peds.2019-1791

31. Ульрих ЕА, Урманчеева АФ, Гуркин ЮА, Семиглазова ДВ, Ульрих ДГ, Халимбекова ДИ и др. Первичная профилактика рака шейки матки. Эффективность, безопасность, экономическая приемлемость вакцинации. Онкогинекология. 2018;(4):61–71.

32. Faust H, Toft L, Sehr P, Müller M, Bonde J, Forslund O, et al. Human Papillomavirus neutralizing and cross-reactive antibodies induced in HIV-positive subjects after vaccination with quadrivalent and bivalent HPV vaccines. Vaccine. 2016;34(13):1559–65. https://doi.org/10.1016/j.vaccine.2016.02.019

33. Stanley M. HPV vaccination in boys and men. Hum Vaccin Immunother. 2014;10(7):2109–11. https://doi.org/10.4161/hv.29137

34. Markowitz LE, Dunne EF, Saraiya M, Chesson HW, Curtis CR, Gee J, et al. Human papillomavirus vaccination: recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm Rep. 2014;63(RR-05):1–30.

35. Castellsagué X, Muñoz N, Pitisuttithum P, Ferris D, Monsonego J, Ault K, et al. End-of-study safety, immunogenicity, and efficacy of quadrivalent HPV (types 6, 11, 16, 18) recombinant vaccine in adult women 24–45 years of age. Br J Cancer. 2011;105(1):28–37. https://doi.org/10.1038/bjc.2011.185

36. Kreimer AR, Herrero R, Sampson JN, Porras C, Lowy DR, Schiller JT, et al. Evidence for single-dose protection by the bivalent HPV vaccine – Review of the Costa Rica HPV vaccine trial and future research studies. Vaccine. 2018;36(32 Pt A):4774–82. https://doi.org/10.1016/j.vaccine.2017.12.078

37. Safaeian M, Sampson JN, Pan Y, Porras C, Kemp TJ, Herrero R, et al. Durability of protection afforded by fewer doses of the HPV16/18 vaccine: the CVT Trial. J Natl Cancer Inst. 2018;110(2). https://doi.org/10.1093/jnci/djx158

38. Kjaer SK, Nygård M, Dillner J, Brooke Marshall J, Radley D, Li M, et al. A 12-year follow-up on the long-term effectiveness of the quadrivalent human papillomavirus vaccine in 4 nordic countries. Clin Infect Dis. 2018;66(3):339–45. https://doi.org/10.1093/cid/cix797

39. Garland SM, Cheung TH, McNeill S, Petersen LK, Romaguera J, Vazquez-Narvaez J, et al. Safety and immunogenicity of a 9-valent HPV vaccine in females 12–26 years of age who previously received the quadrivalent HPV vaccine. Vaccine. 2015;33(48):6855–64. https://doi.org/10.1016/j.vaccine.2015.08.059

40. Arbyn M, Xu L. Efficacy and safety of prophylactic HPV vaccines. A Cochrane review of randomized trials. Expert Rev Vaccines. 2018;17(12):1085–91. https://doi.org/10.1080/14760584.2018.1548282

41. Palmer T, Wallace L, Pollock KG, Cuschieri K, Robertson C, Kavanagh K, Cruickshank M. Prevalence of cervical disease at age 20 after immunisation with bivalent HPV vaccine at age 12–13 in Scotland: retrospective population study. BMJ. 2019;365:l1161. https://doi.org/10.1136/bmj.l1161

42. Drolet M, Bénard É, Pérez N, Brisson M. Population-level impact and herd effects following the introduction of human papillomavirus vaccination programmes: updated systematic review and meta-analysis. Lancet. 2019;394(10197):497–509. https://doi.org/10.1016/S0140-6736(19)30298-3

43. McClung NM, Gargano JW, Park IU, Whitney E, Abdullah N, Ehlers S, et al. Estimated number of cases of high-grade cervical lesions diagnosed among women – United States, 2008 and 2016. MMWR Morb Mortal Wkly Rep. 2019;68(15):337–43. https://doi.org/10.15585/mmwr.mm6815a1

44. Cleveland AA, Gargano JW, Park IU, Griffin MR, Niccolai LM, Powell M, et al. Cervical adenocarcinoma in situ: Human papillomavirus types and incidence trends in five states, 2008–2015. Int J Cancer. 2020;146(3):810–8. https://doi.org/10.1002/ijc.32340

45. Drolet M, Bénard É, Boily MC, Ali H, Baandrup L, Bauer H, et al. Population-level impact and herd effects following human papillomavirus vaccination programmes: a systematic review and meta-analysis. Lancet Infect Dis. 2015;15(5):565–80. https://doi.org/10.1016/S1473-3099(14)71073-4

46. Hall MT, Simms KT, Lew JB, Smith MA, Brotherton JM, Saville M, et al. The projected timeframe until cervical cancer elimination in Australia: a modelling study. Lancet Public Health. 2019;4(1):e19–27. https://doi.org/10.1016/S2468-2667(18)30183-X

47. Maybarduk P, Rimmington S. Compulsory Licenses: A tool to improve global access to the HPV vaccine? Am J Law Med. 2009;35(2–3):323–50. https://doi.org/10.1177/009885880903500205

48. Andrus JK, Sherris J, Fitzsimmons JW, Kane MA, Aguado MT. Introduction of human papillomavirus vaccines into developing countries – international strategies for funding and procurement. Vaccine. 2008;26(Suppl 10):K87–K92. https://doi.org/10.1016/j.vaccine.2008.05.003

49. Padmanabhan S, Amin T, Sampat B, Cook-Deegan R, Chandrasekharan S. Intellectual property, technology transfer and manufacture of low-cost HPV vaccines in India. Nat Biotechnol. 2010;28:671–8. https://doi.org/10.1038/nbt0710-671

50. Yin F, Wang Y, Chen N, Jiang D, Qiu Y, Wang Y, et al. A novel trivalent HPV 16/18/58 vaccine with anti-HPV 16 and 18 neutralizing antibody responses comparable to those induced by the Gardasil quadrivalent vaccine in rhesus macaque model. Papillomavirus Res. 2017;3:85–90. https://doi.org/10.1016/j.pvr.2017.02.005

51. Schellenbacher C, Roden RBS, Kirnbauer R. Developments in L2-based human papillomavirus (HPV) vaccines. Virus Res. 2017;231:166–175. https://doi.org/10.1016/j.virusres.2016.11.020

52. Schellenbacher C, Huber B, Skoll M, Shafti-Keramat S, Kirnbauer R. Incorporation of RG1 epitope into HPV16L1-VLP does not compromise L1-specific immunity. Vaccine. 2019;37(27):3529–34. https://doi.org/10.1016/j.vaccine.2019.05.011

53. Dobson SRM, McNeil S, Dionne M, Dawar M, Ogilvie G, Krajden M, et al. Immunogenicity of 2 doses of HPV vaccine in younger adolescents vs 3 doses in young women: a randomized clinical trial. JAMA. 2013;309(17):1793–802. https://doi.org/10.1001/jama.2013.1625

54. Romanowski B, Schwarz TF, Ferguson LM, Peters K, Dionne M, Schulze K, et al. Immunogenicity and safety of the HPV-16/18 AS04-adjuvanted vaccine administered as a 2-dose schedule compared with the licensed 3-dose schedule: results from a randomized study. Hum Vaccin. 2011;7(12):1374–86. https://doi.org/10.4161/hv.7.12.18322


Для цитирования:


Аляутдина О.С., Прилуцкая В.Ю. Текущие проблемы и будущие направления вакцинации против вируса папилломы человека (ВПЧ). Безопасность и риск фармакотерапии. 2020;8(3):141-150. https://doi.org/10.30895/2312-7821-2020-8-3-141-150

For citation:


Alyautdina O.S., Prilutskaya V.Yu. Ongoing challenges and future directions of human papillomavirus vaccination. Safety and Risk of Pharmacotherapy. 2020;8(3):141-150. (In Russ.) https://doi.org/10.30895/2312-7821-2020-8-3-141-150

Просмотров: 142


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2312-7821 (Print)
ISSN 2619-1164 (Online)