Preview

Безопасность и риск фармакотерапии

Расширенный поиск

Некоторые аспекты оценки лекарственного поражения почек

https://doi.org/10.30895/2312-7821-2020-8-3-123-133

Аннотация

От 14 до 26% лекарственных средств, применяемых в клинической практике, являются потенциально нефротоксичными, оставаясь частой причиной развития острого повреждения почек и хронической болезни почек. Острое повреждение почек у взрослых и детей ассоциировано с высоким риском повторных госпитализаций, осложнений и летальных исходов. Цель работы: анализ научной информации о современных подходах к оценке лекарственного поражения почек. Описаны патогенетические механизмы повреждения почек при применении лекарственных препаратов, а также молекулярные механизмы повреждения, индуцированного приемом лекарственных средств на уровне их транспортеров. Рассмотрены факторы риска развития лекарственного поражения почек: возраст, пол, этническая принадлежность, коморбидные состояния (хроническая болезнь почек, сахарный диабет, сердечно-сосудистые заболевания, иммунные расстройства, сепсис и др.), доза и продолжительность терапии, фармакокинетика лекарственных средств, взаимодействие потенциально нефротоксичных препаратов, генетическая детерминированность метаболизма и транспорта лекарственных средств и другие. Показано, что традиционные маркеры нефротоксичности — уровень креатинина и величина диуреза — обладают низкой чувствительностью в определении ранней стадии повреждения почек, поэтому продолжается поиск новых почечных биомаркеров для диагностики и мониторинга острого повреждения почек у пациентов с различными заболеваниями. Некоторые из этих биомаркеров уже применяются при разработке новых лекарственных средств, в доклинических, клинических исследованиях для оценки и прогнозирования безопасности препаратов. Проведенный анализ показал, что ни один из новых почечных биомаркеров не является универсальным для рутинного использования в клинической практике. Разработка новых биомаркеров острого повреждения почек является долгосрочной инвестицией и необходима для ранней диагностики и успешного лечения лекарственного поражения почек.

Об авторах

Е. А. Сокова
Федеральное государственное бюджетное учреждение «Научный центр экспертизы средств медицинского применения» Министерства здравоохранения Российской Федерации; Федеральное государственное автономное образовательное учреждение высшего образования «Первый Московский государственный университет им. И.М. Сеченова» Министерства здравоохранения Российской Федерации
Россия

канд. мед. наук, доцент

Петровский б-р, д. 8, стр. 2, Москва, 127051

Трубецкая ул., д. 8, стр. 2, Москва, 119991



В. В. Архипов
Федеральное государственное бюджетное учреждение «Научный центр экспертизы средств медицинского применения» Министерства здравоохранения Российской Федерации
Россия

 д-р. мед. наук, доцент

Петровский б-р, д. 8, стр. 2, Москва, 127051



И. А. Мазеркина
Федеральное государственное бюджетное учреждение «Научный центр экспертизы средств медицинского применения» Министерства здравоохранения Российской Федерации
Россия

канд. мед. наук

Петровский б-р, д. 8, стр. 2, Москва, 127051



О. В. Муслимова
Федеральное государственное бюджетное учреждение «Научный центр экспертизы средств медицинского применения» Министерства здравоохранения Российской Федерации
Россия

канд. мед. наук

Петровский б-р, д. 8, стр. 2, Москва, 127051



Список литературы

1. Awdishu L, Mehta RL. The 6R’s of drug induced nephrotoxicity. BMC Nephrol. 2017;18(1):124. https://doi.org/10.1186/s12882-017-0536-3

2. Kellum JA, Lameire N, Aspelin P, Barsoum RS, Burdmann EA, Goldstein SL, et al. Kidney disease: Improving global outcomes (KDIGO) acute kidney injury work group. KDIGO clinical practice guideline for acute kidney injury. Kidney International Supplements 2012;2(1):1–138. https://doi.org/10.1038/kisup.2012.1

3. Hoste EA, Bagshaw SM, Belloma R, Cely CM, Colman R, Cruz DN, et al. Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study. Intensive Care Med. 2015;41(8):1411–23. https://doi.org/10.1007/s00134-015-3934-7

4. Kellum JA, Prowle JR. Paradigms of acute kidney injury in the intensive care setting. Nat Rev Nephrol. 2018;14(4):217–30. https://doi.org/10.1038/nrneph.2017.184

5. Moffett BS, Goldstein SL. Acute kidney injury and increasing nephrotoxic-medication exposure in noncritically-ill children. Clin J Am Soc Nephrol. 2011;6(4):856–63. https://doi.org/10.2215/CJN.08110910

6. Kaddourah A, Basu RK, Bagshaw SM, Goldstein SL. Epidemiology of acute kidney injury in critically ill children and young adults. N Engl J Med. 2017;376(1):11–20. https://doi.org/10.1056/NEJMoa1611391

7. Kashani K, Cheungpasitporn W, Ronco C. Biomarkers of acute kidney injury: the pathway from discovery to clinical adoption. Clin Chem Lab Med. 2017;55(8):1074–89. https://doi.org/10.1515/cclm-2016-0973

8. Taber SS, Mueller BA. Drug-associated renal dysfunction. Crit Care Clin. 2006;22(2):357–74. https://doi.org/10.1016/j.ccc.2006.02.003

9. Sales GTM, Foresto RD. Drug-induced nephrotoxicity. Rev Assoc Med Bras. 2020;66(Suppl 1):S82–90. https://doi.org/10.1590/1806-9282.66.s1.82

10. Al-Naimi MS, Rasheed HA, Hussien NR, Al-Kuraishy HM, Al-Gareeb AI. Nephrotoxicity: role and significance of renal biomarkers in the early detection of acute renal injury. J Adv Pharm Technol Res. 2019;10(3):95–9. https://doi.org/10.4103/japtr.JAPTR_336_18

11. Lin J, Fernandez H, Shashaty MGS, Negoianu D, Testani JM, Berns JS, et al. False-positive rate of AKI using consensus creatinine-based criteria. Clin J Am Soc Nephrol. 2015;10(10):1723–31. https://doi.org/10.2215/CJN.02430315

12. Parikh CR, Mansour SG. Perspective on clinical application of biomarkers in AKI. J Am Soc Nephrol. 2017;28(6):1677–85. https://doi.org/10.1681/ASN.2016101127

13. Вельков ВВ. Цистатин С и NGAL – маркеры преклинической ренальной дисфункции и субклинического острого повреждения почек. Лабораторная служба. 2015;(2):38–43. https://doi.org/10.17116/labs20154238-43

14. Fan W, Ankawi G, Zhang J, Digvijay K, Giavarina D, Yin Y, Ronco C. Current understanding and future directions in the application of TIMP-2 and IGFBP7 in AKI clinical practice. Clin Chem Lab Med. 2019;57(5):567–76. https://doi.org/10.1515/cclm-2018-0776

15. Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P, Acute Dialysis Quality Initiative workgroup. Acute renal failure – definition, outcome measures, animal models, fluid therapy and information technology needs: The Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care. 2004;8(4):R204–12. https://doi.org/10.1186/cc2872

16. Levey AS, Inker LA. Assessment of glomerular filtration rate in health and disease: a state of the art review. Clin Pharmacol Ther. 2017;102(3):405–19. https://doi.org/10.1002/cpt.729

17. Moore PK, Hsu RK, Liu KD. Management of acute kidney injury: core curriculum 2018. Am J Kidney Dis. 2018;72(1):136–48. https://doi.org/10.1053/j.ajkd.2017.11.021

18. Amoghimath S, Majagi SI. Drug Induced Kidney Disease. Open Acc J of Toxicol. 2017;2(1):OAJT. MS. ID.555576.

19. Mehta RL, Awdishu L, Davenport A, Murray PT, Macedo E, Cerda J, et al. Phenotype standardization for drug-induced kidney disease. Kidney Int. 2015;88(2):226–34. https://doi.org/10.1038/ki.2015.115

20. Можокина ГН, Самойлова АГ, Зангиева ЗА. Нефротоксические свойства противотуберкулезных препаратов. Туберкулез и болезни легких. 2019;97(10):59–65 https://doi.org/10.21292/2075-1230-2019-97-10-59-65

21. Milanesi S, Verzola D, Cappadona F, Bonino B, Murugavel A, Pontremoli R, et al. Uric acid and angiotensin II additively promote inflammation and oxidative stress in human proximal tubule cells by activation of toll-like receptor 4. J Cell Physiol. 2019;234(7):10868–76. https://doi.org/10.1002/jcp.27929

22. Lucas GNС, Leitão ACС, Alencar RL, Xavier RMF, Daher EF, Silva Junior GBS. Pathophysiological aspects of nephropathy caused by non-steroidal anti-inflammatory drugs. J Bras Nefrol. 2019;41(1):124–30. https://doi.org/10.1590/2175-8239-JBN-2018-0107

23. Sudjarwo SA, Eraiko K, Sudjarwo GW, Koerniasari. The potency of chitosan-Pinus merkusii extract nanoparticle as the antioxidant and anti-caspase 3 on lead acetate-induced nephrotoxicity in rat. J Adv Pharm Technol Res. 2019;10(1):27–32. https://doi.org/10.4103/japtr.japtr_306_18

24. Qu Y, An F, Luo Y, Lu Y, Liu T, Zhao W, Lin B. Anephron model for study of drug-induced acute kidney injury and assessment of drug-induced nephrotoxicity. Biomaterials. 2018;155:41–53. https://doi.org/10.1016/j.biomaterials.2017.11.010

25. Vormann MK, Gijzen L, Hutter S, Boot L, Nicolas A, van den Heuvel A, et al. Nephrotoxicity and kidney transport assessment on 3D perfused proximal tubules. AAPS J. 2018;20(5):90. https://doi.org/10.1208/s12248-018-0248-z

26. Frazier KS, Obert LA. Drug-induced glomerulonephritis: the spectre of biotherapeutic and antisense oligonucleotide immune activation in the kidney. Toxicol Pathol. 2018;46(8):904–17. https://doi.org/10.1177/0192623318789399

27. Pawar AT, Vyawahare NS. Anti-urolithiatic activity of standardized extract of Biophytumsensitivum against zinc disc implantation induced urolithiasis in rats. J Adv Pharm Technol Res. 2015;6(4):176–82. https://doi.org/10.4103/2231-4040.165017

28. Brocklebank V, Wood KM, Kavanagh D. Thrombotic microangiopathy and the kidney. Clin J Am Soc Nephrol. 2018;13(2):300–17. https://doi.org/10.2215/CJN.00620117

29. Matsubara A, Oda S, Akai S, Tsuneyama K, Yokoi T. Establishment of a drug-induced rhabdomyolysis mouse model by co-administration of ciprofloxacin and atorvastatin. Toxicol Lett. 2018;291:184–93. https://doi.org/10.1016/j.toxlet.2018.04.016

30. Soo JYC, Jansen J, Masereeuw R, Little MH. Advances in predictive in vitro models of drug-induced nephrotoxicity. Nat Rev Nephrol. 2018;14(6):378–93. https://doi.org/10.1038/s41581-018-0003-9

31. Moss DM, Neary M, Owen A. The role of drug transporters in the kidney: lessons from tenofovir. Front Pharmacol. 2014;5:248. https://doi.org/10.3389/fphar.2014.00248

32. Евтеев ВА, Муслимова ОВ, Мазеркина ИА, Бунятян НД, Ших ЕВ, Казаков РЕ. Транспортеры органических анионов и их влияние на токсичность β-лактамных антибиотиков. Безопасность и риск фармакотерапии. 2017;5(2):70–75.

33. Евтеев ВА, Казаков РЕ, Муслимова ОА, Демченкова ЕЮ. Фармакогенетика основных представителей транспортеров органических катионов. Безопасность и риск фармакотерапии. 2018;6(2):78–85 https://doi.org/10.30895/2312-7821-2018-6-2-78-85

34. Hagos Y, Wolff NA. Assessment of the role of renal organic anion transporters in drug-induced nephrotoxicity. Toxins. 2010;2(8):2055–82. https://doi.org/10.3390/toxins2082055

35. Hulot JS, Villard E, Maguy A, Morel V, Mir L, Tostivint I, et al. A mutation in the drug transporter gene ABCC2 associated with impaired methotrexate elimination. Pharmacogenet Genomics. 2005;15(5):277–85. https://doi.org/10.1097/01213011-200505000-00002

36. Li Q, Guo D, Dong Z, Zhang W, Zhang L, Huang SM, et al. Ondansetron can enhance cisplatin-induced nephrotoxicity via inhibition of multiple toxin and extrusion proteins (MATEs). Toxicol Appl Pharmacol. 2013;273(1):100–9. https://doi.org/10.1016/j.taap.2013.08.024

37. Jung KY, Takeda M, Shimoda M, Narikawa S, Tojo A, Kim DK, et al. Involvement of rat organic anion transporter 3 (rOAT3) in cephaloridine-induced nephrotoxicity: in comparison with rOAT1. Life Sci. 2002;70(16):1861–74. https://doi.org/10.1016/s0024-3205(02)01500-x

38. Hu S, Leblanc AF, Gibson AA, Hong KW, Kim JY, Janke LJ, Li L, et al. Identification of OAT1/OAT3 as contributors to cisplatin toxicity. Clin Transl Sci. 2017;10(5):412–20. https://doi.org/10.1111/cts.12480

39. Guo D, Yang H, Li Q, Bae HJ, Obianom O, Zeng S, et al. Selective inhibition on organic cation transporters by carvedilol protects mice from cisplatin-induced nephrotoxicity. Pharm Res. 2018;35(11):204. https://doi.org/10.1007/s11095-018-2486-2

40. Huo X, Meng Q, Wang C, Zhu Y, Liu Z, Ma X, et al. Cilastatin protects against imipenem-induced nephrotoxicity via inhibition of renal organic anion transporters (OATs). Acta Pharm Sin B. 2019;9(5):986–96. https://doi.org/10.1016/j.apsb.2019.02.005

41. Perazella МА. Pharmacology behind common drug nephrotoxicities. Clin J Am Soc Nephrol. 2018;13(12):1897–908. https://doi.org/10.2215/CJN.00150118

42. Izzedine H, Hulot JS, Villard E, Goyenvalle C, Dominguez S, Ghosn J, et al. Association between ABCC2 gene haplotypes and tenofovir-induced proximal tubulopathy. J Infect Dis. 2006;194(11):1481–91. https://doi.org/10.1086/508546

43. Fuchs TC, Hewitt P. Preclinical perspective of urinary biomarkers for the detection of nephrotoxicity: what we know and what we need to know. Biomark Med. 2011;5(6):763–79. https://doi.org/10.2217/bmm.11.86

44. Gerlach CV, Derzi M, Ramaiah SK, Vaidya VS. Industry perspective on biomarker development and qualification. Clin Pharmacol Ther. 2018;103(1):27–31. https://doi.org/10.1002/cpt.919

45. Schomaker S, Ramaiah S, Khan N, Burkhardt J. Safety biomarker applications in drug development. J Toxicol Sci. 2019;44(4):225–35. https://doi.org/10.2131/jts.44.225

46. Barreto EF, Rule AD, Murad MH, Kashani KB, Lieske JC, Erwin PJ, et al. Prediction of the renal elimination of drugs with cystatin C vs creatinine: a systematic review. Mayo Clin Proc. 2019;94(3):500–14. https://doi.org/10.1016/j.mayocp.2018.08.002

47. Alge JL, Arthur JM. Biomarkers of AKI: a review of mechanistic relevance and potential therapeutic implications. Clin J Am Soc Nephrol. 2015;10(1):147–55. https://doi.org/10.2215/CJN.12191213

48. Khawaja S, Jafri L, Siddiqui I, Hashmi M, Ghani F. The utility of neutrophil gelatinase-associated Lipocalin (NGAL) as a marker of acute kidney injury (AKI) in critically ill patients. Biomark Res. 2019;7:4. https://doi.org/10.1186/s40364-019-0155-1

49. Antonucci E, Lippi G, Ticinesi A, Pigna F, Guida L, Morelli I, et al. Neutrophil gelatinase-associated lipocalin (NGAL): a promising biomarker for the early diagnosis of acute kidney injury (AKI). Acta Biomed. 2014;85(3):289–94. https://doi.org/10.2217/bmm.10.12

50. Haase-Fielitz A, Haase M, Devarajan P. Neutrophil gelatinase-associated lipocalin as a biomarker of acute kidney injury: a critical evaluation of current status. Ann Clin Biochem. 2014;51(Pt 3):335–51. https://doi.org/10.1177/0004563214521795

51. Buonafine M, Martinez-Martinez E, Jaisser F. More than a simple biomarker: the role of NGAL in cardiovascular and renal diseases. Сlin Sci (Lond). 2018;132(9):909–23. https://doi.org/10.1042/cs20171592

52. Tanase DM, Gosav EM, Radu S, Costea CF, Ciocoiu M, Carauleanu A, et al.The predictive role of the biomarker kidney molecule-1 (KIM-1) in acute kidney injury (AKI) cisplatin-induced nephrotoxicity. Int J Mol Sci. 2019;20(20):5238. https://doi.org/10.3390/ijms20205238

53. Castello LM, Baldrighi M, Molinari L, Salmi L, Cantaluppi V, Vaschetto R, et al. The role of osteopontin as a diagnostic and prognostic biomarker in sepsis and septic shock. Cells. 2019;8(2):174. https://doi.org/10.3390/cells8020174

54. Hoste EAJ, McCullough PA, Kashani K, Chawla LS, Joannidis M, Shaw AD, et al. Derivation and validation of cutoffs for clinical use of cell cycle arrest biomarkers. Nephrol Dial Transplant. 2014;29(11):2054–61. https://doi.org/10.1093/ndt/gfu292

55. Fan W, Ankawi G, Zhang J, Digvijay K, Giavarina D, Yin Y, Ronco C. Current understanding and future directions in the application of TIMP-2 and IGFBP7 in AKI clinical practice. Clin Chem Lab Med. 2019;57(5):567–76. https://doi.org/10.1515/cclm-2018-0776

56. Bihorac A, Chawla LS, Shaw AD, Al-Khafaji A, Davison DL, Demuth GE, et al. Validation of cell-cycle arrest biomarkers for acute kidney injury using clinical adjudication. Am J Respir Crit Care Med. 2014;189(8):932–9. https://doi.org/10.1164/rccm.201401-0077OC


Рецензия

Для цитирования:


Сокова Е.А., Архипов В.В., Мазеркина И.А., Муслимова О.В. Некоторые аспекты оценки лекарственного поражения почек. Безопасность и риск фармакотерапии. 2020;8(3):123-133. https://doi.org/10.30895/2312-7821-2020-8-3-123-133

For citation:


Sokova E.A., Arkhipov V.V., Mazerkina I.A., Muslimova O.V. Some Aspects of Drug Induced Nephrotoxicity Assessment. Safety and Risk of Pharmacotherapy. 2020;8(3):123-133. (In Russ.) https://doi.org/10.30895/2312-7821-2020-8-3-123-133

Просмотров: 891


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2312-7821 (Print)
ISSN 2619-1164 (Online)