Биомаркеры нефротоксичности: роль и значимость в диагностике лекарственного повреждения почек
https://doi.org/10.30895/2312-7821-2021-9-4-173-184
Аннотация
Лекарственное поражение почек составляет от 8 до 60% эпизодов острого повреждения почек (ОПП) среди госпитализированных пациентов. Как можно более раннее распознавание этого состояния и своевременное принятие мер по коррекции лечения могут уменьшить количество выявленных случаев почечного повреждения и летальных исходов. Цель работы: анализ данных научной литературы о биомаркерах, используемых при проведении диагностики лекарственного поражения почек. Выявлено, что такие маркеры повреждения почек, как уровень сывороточного креатинина, объем выделяемой мочи, концентрация азота мочевины, экскреция натрия, микроскопия мочевого осадка, ограничены в применении в связи с тем, что они не отражают в полном объеме динамику и степень повреждения почек и не позволяют диагностировать развитие ОПП на ранних этапах. Установлено, что наи более перспективными биомаркерами являются в первую очередь KIM-1, L-FABP, NAG, NGAL, цистатин С, кластерин, β2-микроглобулин, МСР-1, IGFBP7 и TIMP-2. Однако определение концентрации новых биомаркеров в моче или в крови для диагностики ОПП может носить лишь рекомендательный характер, так как клинических и доклинических исследований по установлению валидности такого рода тестов проведено недостаточно. До настоящего времени не разработаны точные алгоритмы оценки рисков развития, диагностики, мониторинга течения и терапии ОПП, основанные на определении наличия и уровней данных маркеров в моче и/или в сыворотке крови. Таким образом, необходимо продолжать исследования различных биомаркеров ОПП и совершенствовать экспериментальные модели (как in vivo, так и in vitro), в том числе для изучения потенциальных нефротоксических свойств уже известных и разрабатываемых лекарственных средств.
Ключевые слова
Об авторах
О. В. МуслимоваРоссия
Муслимова Ольга Валерьевна, канд. мед. наук
Петровский б-р, д. 8, стр. 2, Москва, 127051, Российская Федерация
В. А. Евтеев
Россия
Евтеев Владимир Александрович
Петровский б-р, д. 8, стр. 2, Москва, 127051, Российская Федерация
И. А. Мазеркина
Россия
Мазеркина Ирина Анатольевна, канд. мед. наук
Петровский б-р, д. 8, стр. 2, Москва, 127051, Российская Федерация
Е. А. Сокова
Россия
Сокова Елена Андреевна, канд. мед. наук, доцент
Петровский б-р, д. 8, стр. 2, Москва, 127051, Российская Федерация;
Трубецкая ул., д. 8, стр. 2, Москва, 119991, Российская Федерация
А. Б. Прокофьев
Россия
Прокофьев Алексей Борисович, д-р мед. наук, профессор
Петровский б-р, д. 8, стр. 2, Москва, 127051, Российская Федерация
А. В. Шапченко
Россия
Шапченко Анна Валерьевна, канд. мед. наук, доцент
ул. Делегатская, д. 20, стр. 1, Москва, 127473, Российская Федерация
Т. В. Александрова
Россия
Александрова Татьяна Владимировна, канд. мед. наук
Петровский б-р, д. 8, стр. 2, Москва, 127051, Российская Федерация
Список литературы
1. Mody H, Ramakrishnan V, Chaar M, Lezeau J, Rump A, Taha K, et al. A review on drug-induced nephrotoxicity: pathophysiological mechanisms, drug classes, clinical management, and recent advances in mathematical modeling and simulation approaches. Clin Pharmacol Drug Dev. 2020;9(8):896–909. https://doi.org/10.1002/cpdd.879
2. Malyszko J. Biomarkers of acute kidney injury in different clinical settings: a time to change the paradigm? Kidney and Blood Press Res. 2010;33(5):368–82. https://doi.org/10.1159/000319505
3. Taber SS, Mueller BA. Drug-associated renal dysfunction. Crit. Care Clin. 2006;22(2):357–74. https://doi.org/10.1016/j.ccc.2006.02.003
4. Wu H, Huang J. Drug-induced nephrotoxicity: pathogenic mechanisms, biomarkers and prevention strategies. Curr Drug Metab. 2018;19(7):559–67. https://doi.org/10.2174/1389200218666171108154419
5. Brower V. Biomarkers: Portents of malignancy. Nature. 2011;471(7339):S19–21 https://doi.org/10.1038/471S19a
6. Rizvi MS, Kashani KB. Biomarkers for early detection of acute kidney injury. J Appl Lab Med. 2017;2(3):386–99. https://doi.org/10.1373/jalm.2017.023325
7. Andreucci M, Faga T, Pisani A, Perticone M, Michael A. The ischemic/nephrotoxic acute kidney injury and the use of renal biomarkers in clinical practice. Eur J Intern Med. 2017;39:1–8. https://doi.org/10.1016/j.ejim.2016.12.001
8. Fiorentino M, Castellano G, Kellum JA. Differences in acute kidney injury ascertainment for clinical and preclinical studies. Nephrol Dial Transplant. 2017;32(11):1789–805. https://doi.org/10.1093/ndt/gfx002
9. Tajima S, Yamamoto N, Masuda S. Clinical prospects of biomarkers for the early detection and/or prediction of organ injury associated with pharmacotherapy. Biochem Pharmacol. 2019;170:113664. https://doi.org/10.1016/j.bcp.2019.113664
10. Shinke H, Masuda S, Togashi Y, Ikemi Y, Ozawa A, Sato T. Urinary kidney injury molecule-1 and monocyte chemotactic protein-1 are noninvasive biomarkers of cisplatin-induced nephrotoxicity in lung cancer patients. Cancer Chemother Pharmacol. 2015;76(5):989–96. https://doi.org/10.1007/s00280-015-2880-y
11. Cosner D, Zeng X, Zhang PL. Proximal tubular injury in medullary rays is an early sign of acute tacrolimus nephrotoxicity. J Transplant. 2015;(6):142521. https://doi.org/10.1155/2015/142521
12. Shin YJ, Kim TH, Won AJ, Jung JY, Kwack SJ, Kacew S, et al. Age-related differences in kidney injury biomarkers induced by cisplatin. Environ Toxicol Pharmacol. 2014;37(3):1028–39. https://doi.org/10.1016/j.etap.2014.03.014
13. Sinha V, Vence LM, Salahudeen AK. Urinary tubular protein-based biomarkers in the rodent model of cisplatin nephrotoxicity: a comparative analysis of serum creatinine, renal histology, and urinary KIM-1, NGAL, and NAG in the initiation, maintenance, and recovery phases of acute kidney injury. J Investig Med. 2013;61(3):564–8. https://doi.org/10.2310/JIM.0b013e31828233a8
14. Vinken P, Starckx S, Barale-Thomas E, Looszova A, Sonee M, Goeminne N, et al. Tissue KIM-1 and urinary clusterin as early indicators of cisplatin-induced acute kidney injury in rats. Toxicol Pathol. 2012;40(7):1049–62. https://doi.org/10.1177/0192623312444765
15. Luo QH, Chen ML, Sun FJ, Chen Z, Li M, Zeng W, et al. KIM-1 and NGAL as biomarkers of nephrotoxicity induced by gentamicin in rats. Mol Cell Biochem. 2014;397(1–2):53–60. https://doi.org/10.1007/s11010-014-2171-7
16. Kramer AB, van Timmeren MM, Schuurs TA, Vaidya VS, Bonventre JV, van Goor H, et al. Reduction of proteinuria in adriamycin-induced nephropathy is associated with reduction of renal kidney injury molecule (KIM-1) over time. Am J Physiol Renal Physiol. 2009;296(5):F1136–45. https://doi.org/10.1152/ajprenal.00541.2007
17. Zhou Y, Vaidya VS, Brown RP, Zhang J, Rosenzweig BA, Thompson KL, et al. Comparison of kidney injury molecule-1 and other nephrotoxicity biomarkers in urine and kidney following acute exposure to gentamicin, mercury, and chromium. Toxicol Sci. 2008;101(1):159–70. https://doi.org/10.1093/toxsci/kfm260
18. Wunnapuk K, Liu X, Gobe GC, Endre ZH, Peake PW, Grice JE, et al. Kidney biomarkers in MCPA induced acute kidney injury in rats: reduced clearance enhances early biomarker performance. Toxicol Lett. 2014;225(3):467–78. https://doi.org/10.1016/j.toxlet.2014.01.018
19. Cardenas-Gonzalez MC, Del Razo LM, Barrera-Chimal J, Jacobo-Estrada T, López-Bayghen E, Bobadilla NA, et al. Proximal renal tubular injury in rats sub-chronically exposed to low fluoride concentrations. Toxicol Appl Pharmacol. 2013;272(3):888–94. https://doi.org/10.1016/j.taap.2013.07.026
20. Ho J, Tangri N, Komenda P, Kaushal A, Sood M, Brar R, et al. Urinary, plasma, and serum biomarkers’ utility for predicting acute kidney injury associated with cardiac surgery in adults: a meta-analysis. Am J Kidney Dis. 2015;66(6):993–1005. https://doi.org/10.1053/j.ajkd.2015.06.018
21. Li W, Yu Y, He H, Chen J, Zhang D. Urinary kidney injury molecule-1 as an early indicator to predict contrast-induced acute kidney injury in patients with diabetes mellitus undergoing percutaneous coronary intervention. Biomed Rep. 2015;3(4):509–12. https://doi.org/10.3892/br.2015.449
22. Torregrosa I, Montoliu C, Urios A, Andrés-Costa MJ, Giménez-Garzó C, Juan I, et al. Urinary KIM-1, NGAL and L-FABP for the diagnosis of AKI in patients with acute coronary syndrome or heart failure undergoing coronary angiography. Heart Vessels. 2015;30(6):703–11. https://doi.org/10.1007/s00380-014-0538-z
23. Yang CH, Chang CH, Chen TH, Fan PC, Chang SW, Chen CC, et al. Combination of urinary biomarkers improves early detection of acute kidney injury in patients with heart failure. Circ J. 2016;80(4):1017–23. https://doi.org/10.1253/circj.CJ-15-0886
24. Matsui K, Kamijo-Ikemori A, Hara M, Sugaya T, Kodama T, Fujitani S, et al. Clinical significance of tubular and podocyte biomarkers in acute kidney injury. Clin Exp Nephrol. 2011;15(2):220–5. https://doi.org/10.1007/s10157-010-0384-y
25. Katoh H, Nozue T, Kimura Y, Nakata S, Iwaki T, Kawano M, et al. Elevation of urinary liver-type fatty acid-binding protein as predicting factor for occurrence of contrastinduced acute kidney injury and its reduction by hemodiafiltration with blood suction from right atrium. Heart Vessels. 2014;29(2):191–7. https://doi.org/10.1007/s00380-013-0347-9
26. Negishi K, Noiri E, Sugaya T, Li S, Megyesi J, Nagothu K, Portilla D, et al. A role of liver fatty acid-binding protein in cisplatin-induced acute renal failure. Kidney Int. 2007;72(3):348–58. https://doi.org/10.1038/sj.ki.5002304
27. Geus H, Betjes M, Bakker J. Biomarkers for the prediction of acute kidney injury: a narrative review on current status and future challenges. Clin Kidney J. 2012;5(2):102–8. https://doi.org/10.1093/ckj/sfs008
28. Gautier JC, Zhou X, Yang Y, Gury T, Qu Z, Palazzi X, et al. Evaluation of novel biomarkers of nephrotoxicity in Cynomolgus monkeys treated with gentamicin. Toxicol Appl Pharmacol. 2016;303:1–10. https://doi.org/10.1016/j.taap.2016.04.012
29. D’Amico G, Bazzi C. Urinary protein and enzyme excretion as markers of tubular damage. Curr Opin Nephrol Hypertens. 2003;12(6):639–43. https://doi.org/10.1097/01.mnh.0000098771.18213.a6
30. Garcia-Garcia PM, Martin-Izquierdo E, de Basoa CM, Jarque-Lopez A, Perez-Suarez G, Rivero-Gonzales A, et al. Urinary Clara cell protein in kidney transplant patients: a preliminary study. Transplant Proc. 2016:48(9):2884–7. https://doi.org/10.1016/j.transproceed.2016.09.022
31. Hsu CY, Xie D, Waikar SS, Bonventre JV, Zhang X, Sabbisetti V, et al. Urine biomarkers of tubular injury do not improve on the clinical model predicting chronic kidney disease progression, Kidney Int. 2017;91(1):196–203. https://doi.org/10.1016/j.kint.2016.09.003
32. Westhuyzen J, Endre ZH, Reece G, Reith DM, Saltissi D, Morgan TJ, et al. Measurement of tubular enzymuria facilitates early detection of acute renal impairment in the intensive care unit. Nephrol Dial Transplant. 2003;18(3):543–51. https://doi.org/10.1093/ndt/18.3.543
33. Kjeldsen L, Johnsen AH, Sengeløv H, Borregaard N. Isolation and primary structure of NGAL, a novel protein associated with human neutrophil gelatinase. J Biol Chem. 1993;268(14):10425–32. PMID: 7683678
34. Schmidt-Ott KM, Mori K, Li JY, Kalandadze A, Cohen DJ, Devarajan P, Barasch J. Dual action of neutrophil gelatinase-associated lipocalin. J Am Soc Nephrol. 2007;18(2):407–13. https://doi.org/10.1681/ASN.2006080882
35. Wagener G, Jan M, Kim M, Mori K, Barasch JM, Sladen RN, Lee HT. Association between increases in urinary neutrophil gelatinase-associated lipocalin and acute renal dysfunction after adult cardiac surgery. Anesthesiology. 2006;105(3):485–91. https://doi.org/10.1097/00000542-200609000-00011
36. Mishra J, Dent C, Tarabishi R, Mitsnefes MM, Ma Q, Kelly C, et al. Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery. Lancet. 2005;365(9466):1231–8. https://doi.org/10.1016/S0140-6736(05)74811-X
37. Udupa V, Prakash V. Gentamicin induced acute renal damage and its evaluation using urinary biomarkers in rats. Toxicol Rep. 2019;6:91–9. https://doi.org/10.1016/j.toxrep.2018.11.015
38. Uchino H, Fujishima J, Fukuoka K, Iwakiri T, Kamikuri A, Maeda H, Nakama K. Usefulness of urinary biomarkers for nephrotoxicity in cynomolgus monkeys treated with gentamicin, cisplatin, and puromycin aminonucleoside. J Toxicol Sci. 2017;42(5):629–40. https://doi.org/10.2131/jts.42.629
39. Pang HM, Qin XL, Liu TT, Wei WX, Cheng DH, Lu H, et al. Urinary kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin as early biomarkers for predicting vancomycin-associated acute kidney injury: a prospective study. Eur Rev Med Pharmacol Sci. 2017;21(18):4203–13. PMID: 29028077
40. Tsuchimoto A, Shinke H, Uesugi M, Kikuchi M, Hashimoto E, Sato T, et al. Urinary neutrophil gelatinase-associated lipocalin: a useful biomarker for tacrolimus-induced acute kidney injury in liver transplant patients. PLoS One. 2014;9(10):110527. https://doi.org/10.1371/journal.pone.0110527
41. Gaspari F, Cravedi P, Mandala M, Perico N, de Leon FR, Stucchi N, et al. Predicting cisplatin-induced acute kidney injury by urinary neutrophil gelatinase-associated lipocalin excretion: a pilot prospective case-control study. Nephron Clin Pract. 2010;115(2):154–60. https://doi.org/10.1159/000312879
42. Seker MM, Deveci K, Seker A, Sancakdar E, Yilmaz A, Turesin AK, et al. Predictive role of neutrophil gelatinase-associated lipocalin in early diagnosis of platin-induced renal injury. Asian Pac J Cancer Prev. 2015;16(2):407–10. https://doi.org/10.7314/apjcp.2015.16.2.407
43. Shahbazi F, Sadighi S, Dashti-Khavidaki S, Shahi F, Mirzania M. Urine ratio of neutrophil gelatinase-associated lipocalin to creatinine as a marker for early detection of cisplatin-associated nephrotoxicity. Iran J Kidney Dis. 2015;9(4):306–10. PMID: 26174458
44. Lin HY, Lee SC, Lin SF, Hsiao HH, Liu YC, Yang WC, et al. Urinary neutrophil gelatinase-associated lipocalin levels predict cisplatin-induced acute kidney injury better than albuminuria or urinary cystatin C levels. Kaohsiung J Med Sci. 2013;29(6):304–11. https://doi.org/10.1016/j.kjms.2012.10.004
45. Balkanay OO, Goksedef D, Omeroglu SN, Ipek G. The dose-related effects of dexmedetomidine on renal functions and serum neutrophil gelatinaseassociated lipocalin values after coronary artery bypass grafting: a randomized, triple-blind, placebo-controlled study. Interact Cardiovasc Thorac Surg. 2015;20(2):209–14. https://doi.org/10.1093/icvts/ivu367
46. Tasanarong A, Hutayanon P, Piyayotai D. Urinary neutrophil gelatinaseassociated lipocalin predicts the severity of contrast-induced acute kidney injury in chronic kidney disease patients undergoing elective coronary procedures. BMC Nephrol. 2013;14:270. https://doi.org/10.1186/1471-2369-14-270
47. Kardakos IS, Volanis DI, Kalikaki A, Tzortzis VP, Serafetinides EN, Melekos MD, et al. Evaluation of neutrophil gelatinase-associated lipocalin, interleukin-18, and cystatin C as molecular markers before and after unilateral shock wave lithotripsy. Urology. 2014;84(4):783–8. https://doi.org/10.1016/j.urology.2014.05.034
48. Nielsen BS, Borregaard N, Bundgaard JR, Timshel S, Sehested M, Kjeldsen L. Induction of NGAL synthesis in epithelial cells of human colorectal neoplasia and inflammatory bowel diseases. Gut. 1996;38(3):414–20. https://doi.org/10.1136/gut.38.3.414
49. Mishra J, Ma Q, Prada A, Mitsnefes M, Zahedi K, Yang J, et al. Identification of neutrophil gelatinase-associated lipocalin as a novel early urinary biomarker for ischemic renal injury. J Am Soc Nephrol. 2003;14(10):2534–43. https://doi.org/10.1097/01.asn.0000088027.54400.c6
50. Woodson BW, Wang L, Mandava S, Lee BR. Urinary cystatin C and NGAL as early biomarkers for assessment of renal ischemia-reperfusion injury: a serum marker to replace creatinine? J Endourol. 2013;27(12):1510–5. https://doi.org/10.1089/end.2013.0198
51. Aksun SA, Ozmen D, Ozmen B, Parildar Z, Mutaf I, Turgan N, et al. Beta2-microglobulin and cystatin C in type 2 diabetes: assessment of diabetic nephropathy. Exp Clin Endocrinol Diabetes. 2004;112(4):195–200. https://doi.org/10.1055/s-2004-817933
52. Barreto EF, Rule AD, Murad MH, Kashani KB, Lieske JC, Erwin PJ, et al. Prediction of the renal elimination of drugs with cystatin C vs creatinine: a systematic review. Mayo Clin Proc. 2019;94(3):500–14. https://doi.org/10.1016/j.mayocp.2018.08.002
53. Herget-Rosenthal S, Marggraf G, Husing J, Göring F, Pietruck F, Janssen O, et al. Early detection of acute renal failure by serum cystatin C. Kidney Int. 2004;66(3):1115–22. https://doi.org/10.1111/j.1523-1755.2004.00861.x
54. Bokenkamp A, van Wijk JA, Lentze MJ, Stoffel-Wagner B. Effect of corticosteroid therapy on serum cystatin C and beta2-microglobulin concentrations. Clin Chem. 2002;48(7):1123–6. PMID: 12089191
55. Manetti L, Pardini E, Genovesi M, Campomori A, Grasso L, Morselli LL, et al. Thyroid function differently affects serum cystatin C and creatinine concentrations. J Endocrinol Invest. 2005;28(4):346–9. https://doi.org/10.1007/BF03347201
56. Udupa V, Prakash V. Gentamicin induced acute renal damage and its evaluation using urinary biomarkers in rats. Toxicol Rep. 2019;6:91–9. https://doi.org/10.1016/j.toxrep.2018.11.015
57. Pianta TJ, Pickering JW, Succar L, Chin M, Davidson T, Buckley NA, et al. Dexamethasone modifies cystatin C-based diagnosis of acute kidney injury during cisplatin-based chemotherapy. Kidney Blood Press Res. 2017;42(1):62–75. https://doi.org/10.1159/000469715
58. Ylinen E, Jahnukainen K, Saarinen-Pihkala UM, Jahnukainen T. Assessment of renal function during high-dose methotrexate treatment in children with acute lymphoblastic leukemia. Pediatr Blood Cancer. 2014;61(12):2199–202. https://doi.org/10.1002/pbc.25137
59. Torigoe K, Tamura A, Watanabe T, Kadota J. 20-Hour preprocedural hydration is not superior to 5-hour preprocedural hydration in the prevention of contrast-induced increases in serum creatinine and cystatin C. Int J Cardiol. 2013;167(5):2200–3. https://doi.org/10.1016/j.ijcard.2012.05.122
60. Poletti PA, Saudan P, Platon A, Mermillod B, Sautter A-M, Vermeulen B, et al. IV N-acetylcysteine and emergency CT: use of serum creatinine and cystatin C as markers of radiocontrast nephrotoxicity. AJR Am J Roentgenol. 2007;189(3):687–92. https://doi.org/10.2214/AJR.07.2356
61. Masood A, Benabdelkamel H, Ekhzaimy A, Alfadda A. Plasma-based proteomics profiling of patients with hyperthyroidism after antithyroid treatment. Molecules. 2020;25(12):2831. https://doi.org/10.3390/molecules25122831
62. Kohl K, Herzog E, Dickneite G, Pestel S. Evaluation of urinary biomarkers for early detection of acute kidney injury in a rat nephropathy model. J Pharmacol Toxicol Methods. 2020;105:106901. https://doi.org/10.1016/j.vascn.2020.106901
63. Ratnayake I, Mohamed F, Buckley NA, Gawarammana IB, Dissanayake DM, Chathuranga U, et al. Early identification of acute kidney injury in Russell’s viper (Daboia russelii) envenoming using renal biomarkers. PLoS Negl Trop Dis. 2019;13(7):е0007486. https://doi.org/10.1371/journal.pntd.0007486
64. Gordin E, Gordin D, Viitanen S, Szlosek D, Coyne M, Farace G, et al. Urinary clusterin and cystatin B as biomarkers of tubular injury in dogs following envenomation by the European adder. Res Vet Sci. 2021;134:12–8. https://doi.org/10.1016/j.rvsc.2020.11.019
65. Pianta TJ, Succar L, Davidson T, Buckley NA, Endre ZH, et al. Monitoring treatment of acute kidney injury with damage biomarkers. Toxicol Lett. 2017;268:63–70. https://doi.org/10.1016/j.toxlet.2017.01.001
66. Pais GM, Liu J, Avedissian SN, Hiner D, Xanthos T, Chalkias A, et al. Lack of synergistic nephrotoxicity between vancomycin and piperacillin/tazobactam in a rat model and a confirmatory cellular model. J Antimicrob Chemother. 2020;75(5):1228–36. https://doi.org/10.1093/jac/dkz563
67. Da Y, Akalya K, Murali T, Vathsala A, Tan CS, Low S, et al. Serial quantification of urinary protein biomarkers to predict drug-induced acute kidney injury. Curr Drug Metab. 2019;20(8):656–64. https://doi.org/10.2174/1389200220666190711114504
68. Zumrutdal A. Role of β2-microglobulin in uremic patients may be greater than originally suspected. World J Nephrol. 2015;4(1):98–104. https://doi.org/10.5527/wjn.v4.i1.98
69. Argyropoulos CP, Chen SS, Ng Y-H, Roumelioti M-E, Shaffi K, Singh PP, Tzamaloukas AH. Rediscovering beta-2 microglobulin as a biomarker across the spectrum of kidney diseases. Front Med (Lausanne). 2017;4:73. https://doi.org/10.3389/fmed.2017.00073
70. Kim Y-D, Yim D-H, Eom S-Y, Moon S-I, Park C-H, Kim G-B, et al. Temporal changes in urinary levels of cadmium, N-acetyl-β-d-glucosaminidase and β2-microglobulin in individuals in a cadmium-contaminated area. Environ Toxicol Pharmacol. 2015;39(1):35–41. https://doi.org/10.1016/j.etap.2014.10.016
71. Rybakowski JK, Abramowicz M, Chłopocka-Wozniak M, Czekalski S. Novel markers of kidney injury in bipolar patients on long-term lithium treatment. Hum Psychopharmacol. 2013;28(6):615–8. https://doi.org/10.1002/hup.2362
72. Nishijima T, Gatanaga H, Komatsu H, Tsukada K, Shimbo T, Aoki T, et al. Renal function declines more in tenofovirthan abacavir-based antiretroviral therapy in low-body weight treatmentnaive patients with HIV infection. PLoS One. 2012;7:e29977. https://doi.org/10.1371/journal.pone.0029977
73. Oboho I, Abraham A, Benning L, Anastos K, Sharma A, Young M, et al. Tenofovir use and urinary biomarkers among HIV-infected women in the Women’s Interagency HIV Study (WIHS). J Acquir Immune Defic Syndr. 2013;62(4):388–95. https://doi.org/10.1097/QAI.0b013e31828175c9
74. George B, Joy MS, Aleksunes LM. Urinary protein biomarkers of kidney injury in patients receiving cisplatin chemotherapy. Exp Biol Med (Maywood). 2018;243(3):272–82. https://doi.org/10.1177/1535370217745302
75. Gautier JC, Gury T, Guffroy M, Masson R, Khan-Malek R, Hoffman D, et al. Comparison between male and female Sprague-Dawley rats in the response of urinary biomarkers to injury induced by gentamicin. Toxicol Pathol. 2014;42(7):1105–16. https://doi.org/10.1177/0192623314524489
76. Griffin BR, Faubel S, Edelstein CL. Biomarkers of drug-induced kidney toxicity. Ther Drug Monit. 2019;41(2):213–26. https://doi.org/10.1097/FTD.0000000000000589
77. Amighi J, Hoke M, Mlekusch W, Schlager O, Exner M, et al. Beta 2 microglobulin and the risk for cardiovascular events in patients with asymptomatic carotid atherosclerosis. Stroke. 2011;42(7):1826–33. https://doi.org/10.1161/STROKEAHA.110.600312
78. Fan W, Ankawi G, Zhang J, Digvijay K, Giavarina D, Yin Y, Ronco C. Current understanding and future directions in the application of TIMP-2 and IGFBP 7 in AKI clinical practice. Clin Chem Lab Med. 2019;57(5):567–76. https://doi.org/10.1515/cclm-2018-0776
79. Bihorac A, Chawla LS, Shaw AD, Al-Khafaji A, Davison DL, Demuth GE, et al. Validation of cell-cycle arrest biomarkers for acute kidney injury using clinical adjudication. Am J Respir Crit Care Med. 2014;189(8):932–9. https://doi.org/10.1164/rccm.201401-0077OC
80. Yang L, Besschetnova TY, Brooks CR, Shah JV, Bonventre JV. Epithelial cell cycle arrest in G2/M mediates kidney fibrosis after injury. Nat Med. 2010;16(5):535–43. https://doi.org/10.1038/nm.2144
81. Мазеркина ИА, Евтеев ВА, Прокофьев АБ, Муслимова ОВ, Демченкова ЕЮ. Экспериментальные модели клеточных линий для скрининга нефротоксичности. Ведомости Научного центра экспертизы средств медицинского применения. 2021;11(3):160–6. https://doi.org/10.30895/1991-2919-2021-11-160-166
82. Qiu X, Zhou X, Miao Y, Li B. An in vitro method for nephrotoxicity evaluation using HK-2 human kidney epithelial cells combined with biomarkers of nephrotoxicity. Toxicol Res (Camb). 2018;7(6):1205–13. https://doi.org/10.1039/c8tx00095f
83. Qiu X, Miao Y, Geng X, Zhou X, Li B. Evaluation of biomarkers for in vitro prediction of drug-induced nephrotoxicity in RPTEC/TERT1 cells. Toxicol Res (Camb). 2020;9(2):91–100. https://doi.org/10.1093/toxres/tfaa005
84. Silva SCT, de Almeida LA, Soares S, Grossi MF, Valente AMS, Tagliati CA. In vitro study of putative genomic biomarkers of nephrotoxicity through differential gene expression using gentamicin. Toxicol Mech Methods. 2017;27(6):435–41. https://doi.org/10.1080/15376516.2017.1313345
Дополнительные файлы
Рецензия
Для цитирования:
Муслимова О.В., Евтеев В.А., Мазеркина И.А., Сокова Е.А., Прокофьев А.Б., Шапченко А.В., Александрова Т.В. Биомаркеры нефротоксичности: роль и значимость в диагностике лекарственного повреждения почек. Безопасность и риск фармакотерапии. 2021;9(4):173-184. https://doi.org/10.30895/2312-7821-2021-9-4-173-184
For citation:
Muslimova O.V., Evteev V.A., Mazerkina I.A., Sokova E.A., Prokofiev A.B., Shapchenko A.V., Alexandrova T.V. Nephrotoxicity Biomarkers: Role and Significance in the Diagnosis of Drug-Induced Kidney Injury. Safety and Risk of Pharmacotherapy. 2021;9(4):173-184. (In Russ.) https://doi.org/10.30895/2312-7821-2021-9-4-173-184