Safety of Pharmacotherapy in COVID-19 Patients: A Literature Review
https://doi.org/10.30895/2312-7821-2022-10-4-326-344
Abstract
The safety of COVID-19 pharmacotherapy is a relevant issue, first of all, because of the current lack of experience with using particular medicinal products and with off-label prescribing. The aim of the study was to analyse information on potential adverse drug reactions (ADRs) and their predictors in etiology- and pathogenesis-oriented COVID-19 therapy. According to literature data, the main clinically significant risk factors for COVID-19 patients to develop an ADR are the duration of their hospital stay, combined use of antivirals, polypharmacy, and their history of drug allergies. The most common adverse reactions to antivirals, to virus-neutralising antibodies, and to human anti-COVID-19 immunoglobulin and convalescent plasma are, respectively, gastrointestinal and hepatobiliary disor ders; gastrointestinal disorders, neurological disorders, and allergic reactions; and transfusion reactions (fever, chills, etc.). For pathogenesis-oriented therapy with systemic glucocorticosteroids, the most characteristic ADR is hyperglycaemia. Janus kinase inhibitors and interleukin inhibitors are most often associated with gastrointestinal disorders and hypertransaminasemia; neutropenia is also characteristic of a number of interleukin inhibitors. Haemo static adverse reactions to anticoagulants depend on the patient’s dosing regimen and condition. Drug-drug interactions are a common problem in COVID-19 treatment, with the combination of nirmatrelvir and ritonavir showing the largest number of significant interactions attributed to their pharmacokinetics. Currently, there is data on the role of pharmacogenetic biomarkers in the safety and clinical outcomes of COVID-19 therapy. Thus, to improve the safety of COVID-19 therapy, an integrated approach is needed that will take into account both the clinical, demographic, and pharmacogenetic predictors of ADRs and the risk of drug-drug interactions.
Keywords
About the Authors
A. V. KryukovRussian Federation
Alexander V. Kryukov, Cand. Sci. (Med.).
2/1/1 Barrikadnaya St., Moscow 125993;
23 Veshnyakovskaya St., Moscow 111539
A. S. Zhiryakova
Russian Federation
Anna S. Zhiryakova.
2/1/1 Barrikadnaya St., Moscow 125993
Yu. V. Shevchuk
Russian Federation
Yuliya V. Shevchuk.
2/1/1 Barrikadnaya St., Moscow 125993
A. V. Matveev
Russian Federation
Alexander V. Matveev, Cand. Sci. (Med.), Associate Professor.
2/1/1 Barrikadnaya St., Moscow 125993
V. I. Vechorko
Russian Federation
Valeriy I. Vechorko - Dr. Sci. (Med.).
2/1/1 Barrikadnaya St., Moscow 125993;
23 Veshnyakovskaya St., Moscow 111539
O. V. Averkov
Russian Federation
Oleg V. Averkov, Dr. Sci. (Med.), Professor.
23 Veshnyakovskaya St., Moscow 111539
S. V. Glagolev
Russian Federation
Sergey V. Glagolev, Cand. Sci. (Med.).
Scopus Author ID: https://www.scopus.com/authid/detail.uri?authorId=57193931109
3 Rakhmanovsky Per., Moscow 127994
I. I. Temirbulatov
Russian Federation
Ilyas I. Temirbulatov.
2/1/1 Barrikadnaya St., Moscow 125993;
23 Veshnyakovskaya St., Moscow 111539
K. B. Mirzaev
Russian Federation
Karin B. Mirzaev, Dr. Sci. (Med.).
2/1/1 Barrikadnaya St., Moscow 123242
N. P. Denisenko
Russian Federation
Natalya P. Denisenko, Cand. Sci. (Med.).
2/1/1 Barrikadnaya St., Moscow 123242
Sh. P. Abdullaev
Russian Federation
Sherzod P. Abdullaev, Cand. Sci. (Biol.).
2/1/1 Barrikadnaya St., Moscow 123242
D. A. Sychev
Russian Federation
Dmitry A. Sychev, Academician of the RAS, Dr. Sci. (Med.), Professor.
2/1/1 Barrikadnaya St., Moscow 123242
References
1. Zyryanov SK, Zatolo-china KE, Kazakov AS. Current patient safety issues: the role of pharmacovigilance. Obshchestvennoe zdorovie = Public Health. 2022;2(3):25-34 (In Russ.) https://doi.org/10.21045/2782-1676-2021-2-3-25-34
2. Kostyleva MN, Belousov YuB, Gratsianskaya AN, Postnikov SS. Evaluation of safety of drug therapy in clinical practice. FARMAKOEKONOMIKA. Sovremen-naya farmakoekonomika i farmakoepidemiologiya = FARMAKOEKONOMIKA. Modern Pharmacoeconomics and Pharmacoepidemiology. 2014;7(1):27-32 (In Russ.)
3. Ivashchenko DV, Buromskaya NI, Savchenko LM, Shevchenko YS, Sychev DA. Global trigger tool value for revealing of unwanted events related to medical care in pediatrics. Meditsinskiy sovet = Medical Council. 2018;(17):56-66 (In Russ.) https://doi.org/10.21518/2079-701X-2018-17-56-65
4. Nazarenko GI, Kleymenova EB, Otdelenov VA, Payu-shik SA, Yashina LP, Sychev DA. The use of adverse event triggers to identify adverse drug reactions in a multidisciplinary hospital. Klinicheskaya far-makologiya i terapiya = Clinical Pharmacology and Therapy. 2015;24(4):55-62 (In Russ.)
5. Alshehail B, Al Jamea Z, Chacko R, Alotaibi F, Ismail N, Alshayban D. Incidence and risk factors of adverse drug reactions in patients with coronavirus disease 2019: a pharmacovigilance experience utilizing an ADR trigger tool. Saudi Pharm J. 2022;30(4):407-13. https://doi.org/10.1016/i.isps.2022.01.021
6. Sun J, Deng X, Chen X, Huang J, Huang S, Li Y, et al. Incidence of adverse drug reactions in Covid-19 patients in China: an active monitoring study by hospital pharmacovigilance system. Clin Pharmacol Ther. 2020;108(4):791-7. https://doi.org/10.1002/cpt.1866
7. O'Mahony D, O'Connor MN, Eustace J, Byrne S, Petrovic M, Gallagher P. The adverse drug reaction risk in older persons (ADRROP) prediction scale: derivation and prospective validation of an ADR risk assessment tool in older multi-morbid patients. Eur Geriatr Med. 2018;9(2):191-9. https://doi.org/10.1007/s41999-018-0030-x
8. Lavan A, Eustace J, Dahly D, Flanagan E, Gallagher P, Cullinane S, et al. Incident adverse drug reactions in geriatric inpatients: a multicentred observational study. Ther Adv Drug Saf. 2018;9(1):13-23. https://doi.org/10.1177/2042098617736191
9. Iloanusi S, Mgbere O, Essien EJ. Polypharmacy among COVID-19 patients: a systematic review. J Am Pharm Assoc (2003). 2021;61(5):e14-e25. https://doi.Org/10.1016/i.iaph.2021.05.006
10. Wen W, Chen C, Tang J, Wang C, Zhou M, Cheng Y, et al. Efficacy and safety of three new oral antiviral treatment (molnupiravir, fluvoxamine and Paxlovid) for COVID-19: a meta-analysis. Ann Med. 2022;54(1):516-23. https://doi.org/10.1080/07853890.2022.2034936
11. Hammond J, Leister-Tebbe H, Gardner A, Abreu P, Bao W, Wisemandle W, et al. Oral nirmatrelvir for high-risk, nonhospitalized adults with Covid-19. N Engl J Med. 2022;386(15):1397-408. https://doi.org/10.1056/NEJMoa2118542
12. Saravolatz LD, Depcinski S, Sharma M. Molnu-piravir and nirmatrelvir-ritonavir: oral COVID antiviral drugs. Clin Infect Dis. 2022:ciac180. https://doi.org/10.1093/cid/ciac180
13. Wang Y, Zhang D, Du G, Du R, Zhao J, Jin Y, et al. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet. 2020;395(10236):1569-78. https://doi.org/10.1016/S0140-6736(20)31022-9
14. Touafchia A, Bagheri H, Carrie D, Durrieu G, Sommet A, Chouchana L, Montastruc F. Serious bradycardia and remdesivir for coronavirus 2019 (COVID-19): a new safety concerns. Clin Microbiol Infect. 2021;27(5):791.e5-8. https://doi.org/10.1016/Lcmi.2021.02.013
15. Reddy PK, Patil S, Khobragade A, Balki A, Rai A, Kalikar M, et al. Evaluation of the safety and efficacy of favipiravir in adult Indian patients with mild-to-moderate COVID-19 in a real-world setting. Int J Gen Med. 2022;15:4551-63. https://doi.org/10.2147/IJGM.S349241
16. Matveev AV, Mirzaev KB, Sychev DA, Glagolev SV, Kryukov AV, Temirbulatov II. Safety of etiotropic pharmacotherapy for COVID-19 according to spontaneous reports. Vestnik Roszdravnadzora = Bulletin of Roszdravnadzor. 2022;(6) In press (In Russ.)
17. Levin MJ, Ustianowski A, De Wit S, Launay O, Avila M, Templeton A, et al. Intramuscular AZD7442 (tixagevimab-cilgavimab) for prevention of Covid-19. N Engl J Med. 2022;386(23):2188-200. https://doi.org/10.1056/NEJMoa2116620
18. Montgomery H, Hobbs FDR, Padilla F, Arbetter D, Templeton A, Seegobin S, et al. Efficacy and safety of intramuscular administration of tixagevimab-cilgavimab for early outpatient treatment of COVID-19 (TACKLE): a phase 3, randomised, double-blind, placebo-controlled trial. Lancet Respir Med. 2022;10(10):985-96. https://doi.org/10.1016/S2213-2600(22)00180-1
19. Gupta A, Gonzalez-Roias Y, Juarez E, Crespo Casal M, Moya J, Falci DR, et al. Early treatment for Covid-19 with SARS-CoV-2 neutralizing antibody sotrovimab. N Engl J Med. 2021;385(21):1941-50. https://doi.org/10.1056/NEJMoa2107934
20. Lee S, Lee SO, Lee JE, Kim KH, Lee SH, Hwang S, et al. Regdanvimab in patients with mild-to-moderate SARS-CoV-2 infection: a propensity score-matched retrospective cohort study. Int Immunopharmacol. 2022;106:108570. https://doi.org/10.1016/i.intimp.2022.108570
21. Chen P, Nirula A, Heller B, Gottlieb RL, Boscia J, Morris J, et al. SARS-CoV-2 neutralizing antibody LY-CoV555 in outpatients with Covid-19. N Engl J Med. 2021;384(3):229-37. https://doi.org/10.1056/NEJMoa2029849
22. Gottlieb RL, Nirula A, Chen P, Boscia J, Heller B, Morris J, et al. Effect of bamlanivimab as monotherapy or in combination with etesevimab on viral load in patients with mild to moderate COVID-19: a randomized clinical trial. JAMA. 2021;325(7):632-44. https://doi.org/10.1001/jama.2021.0202
23. Weinreich DM, Sivapalasingam S, Norton T, Ali S, Gao H, Bhore R, et al. REGEN-COV antibody combination and outcomes in outpatients with Covid-19. N Engl J Med. 2021;385(23):e81. https://doi.org/10.1056/NEJMoa2108163
24. Portal-Celhay C, Forleo-Neto E, Eagan W, Musser BJ, Davis JD, Turner KC, et al. Phase 2 dose-ranging study of the virologic efficacy and safety of the combination COVID-19 antibodies casirivimab and imdevimab in the outpatient setting. medRxiv 2021.11.09.21265912. https://doi.org/10.1101/2021.11.09.21265912
25. ITAC (INSIGHT 013) Study Group. Hyperimmune immunoglobulin for hospitalised patients with COVID-19 (ITAC): a double-blind, placebo-controlled, phase 3, randomised trial. Lancet. 2022;399(10324):530-40. https://doi.org/10.1016/S0140-6736(22)00101-5
26. Nguyen FT, van den Akker T, Lally K, Lam H, Lenskaya V, Liu STH, et al. Transfusion reactions associated with COVID-19 convalescent plasma therapy for SARS-CoV-2. Transfusion. 2021;61(1):78-93. https://doi.org/10.1111/trf.16177
27. Gupta T, Kannan S, Kalra B, Thakkar P. Systematic review and meta-analysis of randomised controlled trials testing the safety and efficacy of convalescent plasma in the treatment of coronavirus disease 2019 (COVID-19): evidence-base for practise and implications for research. Transfus Med. 2021;31(6):409-20. https://doi.org/10.1111/tme.12803
28. Bhushan BLS, Wanve S, Koradia P, Bhomia V, Soni P, Chakraborty S, et al. Efficacy and safety of pegylated interferon-a2b in moderate COVID-19: a phase 3, randomized, comparator-controlled, open-label study. Int J Infect Dis. 2021;111:281-7. https://doi.org/10.1016/Liiid.2021.08.044
29. Xu N, Pan J, Sun L, Zhou C, Huang S, Chen M, et al. Interferon a-2b spray shortened viral shedding time of SARS-CoV-2 Omicron variant: an open prospective cohort study. Front Immunol. 2022;13:967716. https://doi.org/10.3389/fimmu.2022.967716
30. Tomazini BM, Maia IS, Cavalcanti AB, Berwanger O, Rosa RG, Veiga VC, et al. Effect of dexamethasone on days alive and ventilator-free in patients with moderate or severe acute respiratory distress syndrome and COVID-19: the CoDEX randomized clinical trial. JAMA. 2020;324(13):1307-16. https://doi.org/10.1001/jama.2020.17021
31. COVID STEROID 2 Trial Group, Munch MW, Myatra SN, Vijayaraghavan BKT, Saseedharan S, Benfield T, et al. Effect of 12 mg vs 6 mg of dexamethasone on the number of days alive without life support in adults with COVID-19 and severe hypoxemia: the COVID STEROID 2 randomized trial. JAMA. 2021;326(18):1807-17. https://doi.org/10.1001/jama.2021.18295
32. Les I, Loureiro-Amigo J, Capdevila F, Oriol I, Ele-jalde I, Aranda-Lobo J, et al. Methylprednisolone pulses in hospitalized COVID-19 Patients without respiratory failure: a randomized controlled trial. Front Med (Lausanne). 2022;9:807981. https://doi.org/10.3389/fmed.2022.807981
33. Dhooria S, Chaudhary S, Sehgal IS, Agarwal R, Arora S, Garg M, et al. High-dose versus low-dose prednisolone in symptomatic patients with post-COVID-19 diffuse parenchymal lung abnormalities: an open-label, randomised trial (the COLDSTER trial). Eur Respir J. 2022;59(2):2102930. https://doi.org/10.1183/13993003.02930-2021
34. Dequin PF, Heming N, Meziani F, Plantefeve G, Voiriot G, Badie J, et al. Effect of hydrocortisone on 21-day mortality or respiratory support among critically ill patients with COVID-19: a randomized clinical trial. JAMA. 2020;324(13):1298-306. https://doi.org/10.1001/jama.2020.16761
35. Ramakrishnan S, Nicolau DV Jr, Langford B, Mahdi M, Jeffers H, Mwasuku C, et al. Inhaled budesonide in the treatment of early COVID-19 (STOIC): a phase 2, open-label, randomised controlled trial. Lancet Respir Med. 2021;9(7):763-72. https://doi.org/10.1016/S2213-2600(21)00160-0
36. Guimaraes PO, Quirk D, Furtado RH, Maia LN, Saraiva JF, Antunes MO, et al. Tofacitinib in patients hospitalized with Covid-19 pneumonia. N Engl J Med. 2021;385(5):406-15. https://doi.org/10.1056/NEJMoa2101643
37. Jorgensen SCJ, Tse CLY, Burry L, Dresser LD. Baricitinib: a review of pharmacology, safety, and emerging clinical experience in COVID-19. Pharmacotherapy. 2020;40(8):843-56. https://doi.org/10.1002/phar.2438
38. Biddle K, White J, Sofat N. What is the full potential of baricitinib in treating patients with COVID-19? Expert Rev Clin Immunol. 2022;18(6):545-9. https://doi.org/10.1080/1744666X.2022.2072298
39. Stone JH, Frigault MJ, Serling-Boyd NJ, Fernandes AD, Harvey L, Foulkes AS, et al. Efficacy of tocilizumab in patients hospitalized with Covid-19. N Engl J Med. 2020;383(24):2333-44. https://doi.org/10.1056/NEJMoa2028836
40. Perrone F, Piccirillo MC, Ascierto PA, Salvarani C, Parrella R, Marata AM, et al. Tocilizumab for patients with COVID-19 pneumonia. The single-arm TO-CIVID-19 prospective trial. Transl Med. 2020;18(1):405. https://doi.org/10.1186/s12967-020-02573-9
41. Lescure FX, Honda H, Fowler RA, Lazar JS, Shi G, Wung P, et al. Sarilumab in patients admitted to hospital with severe or critical COVID-19: a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Respir Med. 2021;9(5):522-32. https://doi.org/10.1016/S2213-2600(21)00099-0
42. Hermine O, Mariette X, Porcher R, Resche-Rigon M, Tharaux PL, Ravaud P; CORIMUNO-19 Collaborative Group. Effect of interleukin-6 receptor antagonists in critically ill adult patients with COVID-19 pneumonia: two randomised controlled trials of the CORIMUNO-19 Collaborative Group. Eur Respir J. 2022;60:2102523. https://doi.org/10.1183/13993003.02523-2021
43. Cavalli G, De Luca G, Campochiaro C, Della-Torre E, Ripa M, Canetti D, et al. Interleukin-1 blockade with high-dose anakinra in patients with COVID-19, acute respiratory distress syndrome, and hyperinflammation: a retrospective cohort study. Lancet Rheumatol. 2020;2(6):e325-e331. https://doi.org/10.1016/S2665-9913(20)30127-2
44. Kyriazopoulou E, Poulakou G, Milionis H, Metal-lidis S, Adamis G, Tsiakos K, et al. Early treatment of COVID-19 with anakinra guided by soluble urokinase plasminogen receptor plasma levels: a double-blind, randomized controlled phase 3 trial. Nat Med. 2021;27(10):1752-60. https://doi.org/10.1038/s41591-021-01499-z
45. Huet T, Beaussier H, Voisin O, Jouveshomme S, Dauriat G, Lazareth I, et al. Anakinra for severe forms of COVID-19: a cohort study. Lancet Rheumatol. 2020;2(7):e393-e400. https://doi.org/10.1016/S2665-9913(20)30164-8
46. Lomakin NV, Bakirov BA, Protsenko DN, Mazurov VI, Musaev GH, Moiseeva OM, et al. The efficacy and safety of levilimab in severely ill COVID-19 patients not requiring mechanical ventilation: results of a multicenter randomized double-blind placebo-controlled phase III CORONA clinical study. Inflamm Res. 2021;70(10-12):1233-46. https://doi.org/10.1007/s00011-021-01507-5
47. Flumignan RL, Civile VT, Tinoco JDS, Pascoal PI, Areias LL, Matar CF, et al. Anticoagulants for people hospitalised with COVID-19. Cochrane Database Syst Rev. 2022;3(3):CD013739. https://doi.org/10.1002/14651858.CD013739.pub2
48. Pilia E, Belletti A, Fresilli S, Finco G, Landoni G. Efficacy and safety of heparin full-dose anticoagulation in hospitalized non-critically ill COVID-19 patients: a meta-analysis of multicenter randomized controlled trials. J Thromb Thrombolysis.2022;(54):1-11. https://doi.org/10.1007/s11239-022-02681-x
49. Lopes RD, de Barros E Silva PGM, Furtado RHM, Macedo AVS, Bronhara B, Damiani LP, et al. Therapeutic versus prophylactic anticoagulation for patients admitted to hospital with COVID-19 and elevated D-dimer concentration (ACTION): an open-label, multicentre, randomised, controlled trial. Lancet. 2021;397(10291):2253-63. https://doi.org/10.1016/S0140-6736(21)01203-4
50. Marzolini C, Kuritzkes DR, Marra F, Boyle A, Gibbons S, Flexner C, et al. Recommendations for the management of drug-drug interactions between the COVID-19 antiviral nirmatrelvir/ritonavir (paxlovid) and comedications. Clin Pharmacol Ther. 2022:10.1002/cpt.2646.https://doi.org/10.1002/cpt.2646
51. Agarwal S, Agarwal SK. Lopinavir-ritonavir in SARS-CoV-2 infection and drug-drug interactions with cardioactive medications. Cardiovasc Drugs Ther. 2021;35(3): 427-40. https://doi.org/10.1007/s10557-020-07070-1
52. Shini Rubina SK, Anuba PA, Swetha B, Kalala KP, Aishwarya PM, Sabarathinam S. Drug interaction risk between cardioprotective drugs and drugs used in treatment of COVID-19: an evidence-based review from six databases. Diabetes Metab Syndr. 2022;16(3):102451. https://doi.org/10.1016Zi.dsx.2022.102451
53. Niu W, Li S, Jin S, Lin X, Zhang M, Cai W, et al. Investigating the interaction between nifedipine- and ritonavir-containing antiviral regimens: a physiologically based pharmacokinetic/pharmacodynamic analysis. Br J Clin Pharmacol. 2021;87(7):2790-806. https://doi.org/10.1111/bcp.14684
54. Marzolini C, Kuritzkes DR, Marra F, Boyle A, Gibbons S, Flexner C, et al. Prescribing nirmatrelvir-ri-tonavir: how to recognize and manage drug-drug interactions. Ann Intern Med. 2022;175(5):744-6. https://doi.org/10.7326/M22-0281
55. Stader F, Kinvig H, Battegay M, Khoo S, Owen A, Siccar-di M, Marzolini C. Analysis of clinical drug-drug interaction data to predict magnitudes of uncharacterized interactions between antiretroviral drugs and comedications. Antimicrob Agents Chemother. 2018;62(7): e00717-18. https://doi.org/10.1128/AAC.00717-18
56. Wanounou M, Caraco Y, Levy RH, Bialer M, Pe-rucca E. Clinically relevant interactions between ritonavir-boosted nirmatrelvir and concomitant antiseizure medications: implications for the management of COVID-19 in patients with epilepsy. Clin Pharmacokinet. 2022;61(9):1219-36. https://doi.org/10.1007/s40262-022-01152-z
57. Takahashi T, Luzum JA, Nicol MR, Jacobson PA. Pharmacogenomics of COVID-19 therapies. NPJ genomic medicine. 2020;5(1):1-7.https://doi.org/10.1038/s41525-020-00143-y
58. Fricke-Galindo I, Falfan-Valencia R. Pharmacogenetics approach for the improvement of COVID-19 treatment. Viruses. 2021;13(3):413. https://doi.org/10.3390/v13030413
Supplementary files
![]() |
1. Table 12. Clinically significant drug-drug interactions of nirmatrelvir-ritonavir (according to Liverpool COVID-19 Drug Interactions) | |
Subject | ||
Type | Результаты исследования | |
Download
(610KB)
|
Indexing metadata ▾ |
Review
For citations:
Kryukov A.V., Zhiryakova A.S., Shevchuk Yu.V., Matveev A.V., Vechorko V.I., Averkov O.V., Glagolev S.V., Temirbulatov I.I., Mirzaev K.B., Denisenko N.P., Abdullaev Sh.P., Sychev D.A. Safety of Pharmacotherapy in COVID-19 Patients: A Literature Review. Safety and Risk of Pharmacotherapy. 2022;10(4):326-344. (In Russ.) https://doi.org/10.30895/2312-7821-2022-10-4-326-344