Оценка лекарственной гепатотоксичности in vitro на клеточных моделях (обзор)
https://doi.org/10.30895/2312-7821-2023-11-2-351
Резюме
Лекарственная гепатотоксичность составляет 15–18% от общего числа всех причин отзыва лекарственных препаратов из оборота при пострегистрационном применении. Стандартные доклинические исследования in vivo на лабораторных животных часто бывают нерелевантны из-за видоспецифичных различий с человеком. Перспективной альтернативой является разработка методов доклинических исследований in vitro на клеточных культурах.
Цель работы — обзор современных клеточных моделей для определения лекарственной гепатотоксичности in vitro.
Клетки, используемые для изучения механизмов гепатотоксичности in vitro, должны обладать специфичным метаболизмом и активностью ферментных и транспортных систем печени. Представлен обзор по основным клеточным культурам (первичные гепатоциты, бессмертные клеточные линии, гепатоцит-подобные клетки, полученные из стволовых клеток, и сокультуры из гепатоцитов и непаренхиматозных клеток) и конфигурациям клеточных систем. Продемонстрировано, что совершенствование клеточных систем происходит в направлении увеличения продолжительности жизни и функциональной сохранности клеток, усложнения конфигурации и клеточного состава с приближением к условиям in vivo. Установлено, что лекарственное повреждение печени может происходить вследствие образования химически активных метаболитов, развития оксидативного стресса, митохондриального повреждения, внутриклеточного накопления токсических желчных кислот при ингибировании транспортеров, активации адаптивной иммунной системы. В связи с этим для исследования лекарственной гепатотоксичности применяют различные методики, в том числе инновационные технологии (одновременного многопараметрического скрининга, транскриптомики, протеомики, метаболомики) для получения, хранения и обработки большого объема данных. Клеточные модели могут использоваться не только для выявления лекарственной гепатотоксичности, но и для изучения механизмов повреждения печени. Наиболее перспективными являются омик-технологии, создание сложных моделей с сокультивированием различных типов клеток и органы-на-чипе.
Ключевые слова
Об авторе
И. А. МазеркинаРоссия
Ирина Анатольевна Мазеркина, канд. мед. наук
Петровский б-р, д. 8, стр. 2, Москва, 127051
Список литературы
1. Onakpoya IJ, Heneghan CJ, Aronson JK. Post-marketing withdrawal of 462 medicinal products because of adverse drug reactions: a systematic review of the world literature. BMC Med. 2016;4(14):10. https://doi.org/10.1186/s12916-016-0553-2
2. Wouters OJ, McKee M, Luyten J. Estimated research and development investment needed to bring a new medicine to market, 2009–2018. JAMA. 2020;323(9):844–53. https://doi.org/10.1001/jama.2020.1166
3. DiMasi JA, Grabowski HG, Hansen RW. Innovation in the pharmaceutical industry: new estimates of R&D costs. J Health Econ. 2016;47:20–33. https://doi.org/10.1016/j.jhealeco.2016.01.012
4. Sakai C, Iwano S, Yamazaki Y, Ando A, Nakane F, Kouno M, et al. Species differences in the pharmacokinetic parameters of cytochrome P450 probe substrates between experimental animals, such as mice, rats, dogs, monkeys, and microminipigs, and humans. Drug Metab Toxicol. 2014;5:6. https://doi.org/10.4172/2157-7609.1000173
5. Spanhaak S, Cook D, Barnes J, Reynolds J. Species concordance for liver injury. In: Safety Intelligence Program Board. Cambridge, UK: BioWisdom, Ltd; 2008.
6. Hewitt NJ, Gómez Lechón MJ, Houston JB, Hallifax D, Brown HS, Maurel P, et al. Primary hepatocytes: current understanding of the regulation of metabolic enzymes and transporter proteins, and pharmaceutical practice for the use of hepatocytes in metabolism, enzyme induction, transporter, clearance, and hepatotoxicity studies. Drug Metab Rev. 2007;39(1):159–234. https://doi.org/10.1080/03602530601093489
7. Vickers AE, Bentley P, Fisher RL. Consequences of mitochondrial injury induced by pharmaceutical fatty acid oxidation inhibitors is characterized in human and rat liver slices. Toxicol In Vitro. 2006;20(7):1173–82. https://doi.org/10.1016/j.tiv.2006.01.021
8. Edwards RJ, Price RJ, Watts PS, Renwick AB, Tredger JM, Boobis AR, Lake BG. Induction of cytochrome P450 enzymes in cultured precision-cut human liver slices. Drug Metab Dispos. 2003;31(3):282–8. https://doi.org/10.1124/dmd.31.3.282
9. Starokozhko V, Vatakuti S, Schievink B, Merema MT, Asplund A, Synnergren J, et al. Maintenance of drug metabolism and transport functions in human precision-cut liver slices during prolonged incubation for 5 days. Arch Toxicol. 2017;91(5):2079–92. https://doi.org/10.1007/s00204-016-1865-x
10. Hadi M, Westra IM, Starokozhko V, Dragovic S, Merema MT, Groothuis GM. Human precision-cut liver slices as an ex vivo model to study idiosyncratic drug-induced liver injury. Chem Res Toxicol. 2013;26(5):710–20. https://doi.org/10.1021/tx300519p
11. Khetani SR, Kanchagar C, Ukairo O, Krzyzewski S, Moore A, Shi J, et al. Use of micropatterned cocultures to detect compounds that cause drug-induced liver injury in humans. Toxicol Sci. 2013;132(1):107–17. https://doi.org/10.1093/toxsci/kfs326
12. Burkard A, Dähn C, Heinz S, Zutavern A, Sonn tag-Buck V, Maltman D, et al. Generation of proliferating human hepatocytes using Upcyte® technology: characterisation and applications in induction and cytotoxicity assays. Xenobiotica. 2012;42(10):939–56. https://doi.org/10.3109/00498254.2012.675093
13. Segovia-Zafra A, Di Zeo-Sánchez DE, López-Gómez C, Pérez-Valdés Z, García-Fuentes E, Andrade RJ, et al. Preclinical models of idiosyncratic drug-induced liver injury (iDILI): moving towards prediction. Acta Pharm Sin B. 2021;11(12):3685–726. https://doi.org/10.1016/j.apsb.2021.11.013
14. Sison-Young RL, Mitsa D, Jenkins RE, Mottram D, Alexandre E, Richert L, et al. Comparative proteomic characterization of 4 human liver-derived single cell culture models reveals significant variation in the capacity for drug disposition, bioactivation, and detoxication. Toxicol Sci. 2015;147(2):412–24. https://doi.org/10.1093/toxsci/kfv136
15. Saran C, Fu D, Ho H, Klein A, Fallon JK, Honkakoski P, et al. A novel differentiated HuH-7 cell model to examine bile acid metabolism, transport and cholestatic hepatotoxicity. Sci Rep. 2022;12(1):14333. https://doi.org/10.1038/s41598-022-18174-z
16. Schwartz RE, Fleming HE, Khetani SR, Bhatia SN. Pluripotent stem cell-derived hepatocyte-like cells. Biotechnol Adv. 2014;32(2):504–13. https://doi.org/10.1016/j.biotechadv.2014.01.003
17. Imagawa K, Takayama K, Isoyama S, Tanikawa K, Shinkai M, Harada K, et al. Generation of a bile salt export pump deficiency model using patient-specific induced pluripotent stem cell-derived hepatocyte-like cells. Sci Rep. 2017;7:41806. https://doi.org/10.1038/srep41806
18. Nguyen TV, Ukairo O, Khetani SR, McVay M, Kanchagar C, Seghezzi W, et al. Establishment of a hepatocyte-Kupffer cell coculture model for assessment of proinflammatory cytokine effects on metabolizing enzymes and drug transporters. Drug Metab Dispos. 2015;43(5):774–85. https://doi.org/10.1124/dmd.114.061317
19. Baze A, Parmentier C, Hendriks DFG, Hurrell T, Heyd B, Bachellier P, et al. Three-dimensional spheroid primary human hepatocytes in monoculture and coculture with nonparenchymal cells. Tissue Eng Part C Methods. 2018;24(9):534–45. https://doi.org/10.1089/ten.TEC.2018.0134
20. Olsen AL, Bloomer SA, Chan EP, Gaça MD, Georges PC, Sackey B, et al. Hepatic stellate cells require a stiff environment for myofibroblastic differentiation. Am J Physiol Gastrointest Liver Physiol. 2011;301(1):110–8. https://doi.org/10.1152/ajpgi.00412.2010
21. Khetani SR, Berger DR, Ballinger KR, Davidson MD, Lin C, Ware BR. Microengineered liver tissues for drug testing. J Lab Autom. 2015;20(3):216–50. https://doi.org/10.1177/2211068214566939
22. Yokoyama Y, Sasaki Y, Terasaki N, Kawataki T, Takekawa K, Iwase Y, et al. Comparison of drug metabolism and its related hepatotoxic effects in HepaRG, cryopreserved human hepatocytes, and HepG2 cell cultures. Biol Pharm Bull. 2018;41(5):722–32. https://doi.org/10.1248/bpb.b17-00913
23. Wu X, Wang S, Li M, Li J, Shen J, Zhao Y, et al. Conditional reprogramming: next generation cell culture. Acta Pharm Sin B. 2020;10(8):1360–81. https://doi.org/10.1016/j.apsb.2020.01.011
24. Su S, Di Poto C, Roy R, Liu X, Cui W, Kroemer A, Ressom HW. Long-term culture and characterization of patient-derived primary hepatocytes using conditional reprogramming. Exp Biol Med (Maywood). 2019;244(11):857–64. https://doi.org/10.1177/1535370219855398
25. De Bruyn T, Chatterjee S, Fattah S, Keemink J, Nicolaï J, Augustijns P, et al. Sandwich-cultured hepatocytes: utility for in vitro exploration of hepatobiliary drug disposition and drug-induced hepatotoxicity. Expert Opin Drug Metab Toxicol. 2013;9(5):589–616. https://doi.org/10.1517/17425255.2013.773973
26. Yanni SB, Augustijns PF, Benjamin DK Jr, Brouwer KL, Thakker DR, Annaert PP. In vitro investigation of the hepatobiliary disposition mechanisms of the antifungal agent micafungin in humans and rats. Drug Metab Dispos. 2010;38(10):1848–56. https://doi.org/10.1124/dmd.110.033811
27. Matsunaga N, Suzuki K, Nakanishi T, Ogawa M, Imawaka H, Tamai I. Modeling approach for multiple transporters-mediated drug-drug interactions in sandwich-cultured human hepatocytes: effect of cyclosporin A on hepatic disposition of mycophenolic acid phenyl-glucuronide. Drug Metab Pharmacokinet. 2015;30(2):142–8. https://doi.org/10.1016/j.dmpk.2014.10.006
28. Fu D, Cardona P, Ho H, Watkins PB, Brouwer KLR. Novel mechanisms of valproate hepatotoxicity: impaired Mrp2 trafficking and hepatocyte depolarization. Toxicol Sci. 2019;171(2):431–42. https://doi.org/10.1093/toxsci/kfz154
29. Berger DR, Ware BR, Davidson MD, Allsup SR, Khetani SR. Enhancing the functional maturity of induced pluripotent stem cell-derived human hepatocytes by controlled presentation of cell-cell interactions in vitro. Hepatology. 2015;61(4):1370–81. https://doi.org/10.1002/hep.27621
30. Takahashi Y, Hori Y, Yamamoto T, Urashima T, Ohara Y, Tanaka H. 3D spheroid cultures improve the metabolic gene expression profiles of HepaRG cells. Biosci Rep. 2015;35(3):e00208. https://doi.org/10.1042/BSR20150034
31. Bell CC, Dankers ACA, Lauschke VM, Sison-Young R, Jenkins R, Rowe C, et al. Comparison of hepatic 2D sandwich cultures and 3D spheroids for long-term toxicity applications: a multicenter study. Toxicol Sci. 2018;162(2):655–66. https://doi.org/10.1093/toxsci/kfx289
32. Kostadinova R, Boess F, Applegate D, Suter L, Weiser T, Singer T, et al. A long-term three dimensional liver co-culture system for improved prediction of clinically relevant drug-induced hepatotoxicity. Toxicol Appl Pharmacol. 2013;268(1):1–16. https://doi.org/10.1016/j.taap.2013.01.012
33. Vorrink SU, Zhou Y, Ingelman-Sundberg M, Lauschke VM. Prediction of drug-induced hepatotoxicity using long-term stable primary hepatic 3D spheroid cultures in chemically defined conditions. Toxicol Sci. 2018;163(2):655–65. https://doi.org/10.1093/toxsci/kfy058
34. Ide I, Nagao E, Kajiyama S, Mizoguchi N. A novel evaluation method for determining drug-induced hepatotoxicity using 3D bio-printed human liver tissue. Toxicol Mech Methods. 2020;30(3):189–96. https://doi.org/10.1080/15376516.2019.1686795
35. Schmidt K, Berg J, Roehrs V, Kurreck J, Al-Zeer MA. 3D-bioprinted HepaRG cultures as a model for testing long term aflatoxin B1 toxicity in vitro. Toxicol Rep. 2020;7:1578–87. https://doi.org/10.1016/j.toxrep.2020.11.003
36. Deng J, Wei W, Chen Z, Lin B, Zhao W, Luo Y, et al. Engineered liver-on-a-chip platform to mimic liver functions and its biomedical applications: a review. Micromachines (Basel). 2019;10(10):676. https://doi.org/10.3390/mi10100676
37. Rubiano A, Indapurkar A, Yokosawa R, Miedzik A, Rosenzweig B, Arefin A, et al. Characterizing the reproducibility in using a liver microphysiological system for assaying drug toxicity, metabolism, and accumulation. Clin Transl Sci. 2021;14(3):1049–61. https://doi.org/10.1111/cts.12969
38. Picollet-D’hahan N, Zuchowska A, ILemeunier I, Le Gac S. Multiorgan-on-a-chip: a systemic approach to model and decipher inter-organ communication. Trends in Biotechnology. 2021;39(8):788–810. https://doi.org/10.1016/j.tibtech.2020.11.014
39. Bricks T, Paullier P, Legendre A, Fleury MJ, Zeller P, Merlier F, et al. Development of a new microfluidic platform integrating co-cultures of intestinal and liver cell lines. Toxicol Vitro. 2014;28(5):885–95. https://doi.org/10.1016/j.tiv.2014.02.005
40. Oleaga C, Bernabini C, Smith AS, Srinivasan B, Jackson M, McLamb W, et al. Multi-organ toxicity demonstration in a functional human in vitro system composed of four organs. Sci Rep. 2016;6(1):20030. https://doi.org/10.1038/srep20030
41. Weaver RJ, Betts C, Blomme EAG, Gerets HHJ, Gjervig Jensen K, Hewitt PG, et al. Test systems in drug discovery for hazard identification and risk assessment of human drug-induced liver injury. Expert Opin Drug Metab Toxicol. 2017;13(7):767–82. https://doi.org/10.1080/17425255.2017.1341489
42. Benbow JW, Aubrecht J, Banker MJ, Nettleton D, Aleo MD. Predicting safety toleration of pharmaceutical chemical leads: cytotoxicity correlations to exploratory toxicity studies. Toxicol Lett. 2010;197(3):175–82. https://doi.org/10.1016/j.toxlet.2010.05.016
43. Roth AD, Lee MY. Idiosyncratic drug-induced liver injury (IDILI): potential mechanisms and predictive assays. Biomed Res Int. 2017;2017:9176937. https://doi.org/10.1155/2017/9176937
44. Jee A, Sernoskie SC, Uetrecht J. Idiosyncratic drug-induced liver injury: mechanistic and clinical challenges. Int J Mol Sci. 2021;22(6):2954. https://doi.org/10.3390/ijms22062954
45. Devi SS, Palkar PS, Mehendale HM. Measuring covalent binding in hepatotoxicity. Curr Protoc Toxicol. 2007;14:Unit14.6. https://doi.org/10.1002/0471140856.tx1406s32
46. Wang Q, Liu H, Slavsky M, Fitzgerald M, Lu C, O’Shea T. A high-throughput glutathione trapping assay with combined high sensitivity and specificity in high-resolution mass spectrometry by applying product ion extraction and data-dependent neutral loss. J Mass Spectrom. 2019;54(2):158–66. https://doi.org/10.1002/jms.4320
47. Ramachandran A, Jaeschke H. Oxidative stress and acute hepatic injury. Curr Opin Toxicol. 2018;7:17–21. https://doi.org/10.1016/j.cotox.2017.10.011
48. Chen S, Zhang Z, Qing T, Ren Z, Yu D, Couch L, Ning B, Mei N, Shi L, Tolleson WH, Guo L. Activation of the Nrf2 signaling pathway in usnic acid-induced toxicity in HepG2 cells. Arch Toxicol. 2017;91(3):1293–307. https://doi.org/10.1007/s00204-016-1775-y
49. Mihajlovic M, Vinken M. Mitochondria as the target of hepatotoxicity and drug-induced liver injury: molecular mechanisms and detection methods. Int J Mol Sci. 2022;23:3315. https://doi.org/10.3390/ijms23063315
50. Nadanaciva S, Will Y. The role of mitochondrial dysfunction and drug safety. IDrugs. 2009;12(11):706–10. PMID: 19844857
51. Begriche K, Massart J, Robin M, Borgne-Sanchez A, Fromenty B. Drug-induced toxicity on mitochondria and lipid metabolism: mechanistic diversity and deleterious consequences for the liver. J Hepatol. 2011;54(14):773–94. https://doi.org/10.1016/j.jhep.2010.11.006
52. Fromenty B. Alteration of mitochondrial DNA homeostasis in drug-induced liver injury. Food Chem Toxicol. 2020;135:110916. https://doi.org/10.1016/j.fct.2019.110916
53. McKee E, Ferguson M, Bentley A, Marks T. Inhibition of mammalian mitocondrial protein synthesis by oxazolidinones. Antimicrobial Agents Chemother. 2006;50(16):2042–9. https://doi.org/10.1128/AAC.01411-05
54. Kamalian L, Douglas O, Jolly CE, Snoeys J, Simic D, Monshouwer M, et al. Acute metabolic switch assay using glucose/galactose medium in HepaRG cells to detect mitochondrial toxicity. Curr Protoc Toxicol. 2019;80(1):76. https://doi.org/10.1002/cptx.76
55. Nadanaciva S, Willis J, Barker M, Gharaibeh D, Capaldi R, Marusich M, et al. Assessment of drug-induced mitochondrial dysfunction via altered cellular respiration and acidification measured in a 96-well platform. J Bioenerg Biomembr. 2012;44(14):421–37. https://doi.org/10.1007/s10863-012-9446-z
56. Marchetti P, Fovez Q, Germain N, Khamari R, Kluza J. Mitochondrial spare respiratory capacity: mechanisms, regulation, and significance in non-transformed and cancer cells. FASEB J. 2020;34(10):13106–24. https://doi.org/10.1096/fj.202000767R
57. Nadanaciva S, Willis JH, Barker ML, Gharaibeh D, Capaldi RA, Marusich MF, et al. Lateral-flow immunoassay for detecting drug-induced inhibition of mitochondrial DNA replication and mtDNA-encoded protein synthesis. J Immunol Methods. 2009;343(1):1–12. https://doi.org/10.1016/j.jim.2008.12.002
58. Porceddu M, Buron N, Rustin P, Fromenty B, Borgne-Sanchez A. In vitro assessment of mitochondrial toxicity to predict drug-induced liver injury. In: Chen M, Will Y, eds. Drug-induced liver toxicity. New York: Springer New York; 2018. P. 283–300. https://doi.org/10.1007/978-1-4939-7677-5_14
59. Perez MJ, Briz O. Bile-acid-induced cell injury and protection. World J Gastroenterol. 2009;15(14):1677–89. https://doi.org/10.3748/wjg.15.1677
60. Garzel B, Yang H, Zhang L, Huang SM, Polli JE, Wang H. The role of bile salt export pump gene repression in drug-induced cholestatic liver toxicity. Drug Metab Dispos. 2014;42(3):318–22. https://doi.org/10.1124/dmd.113.054189
61. Stieger B, Mahdi ZM. Model systems for studying the role of canalicular efflux transporters in drug-induced cholestatic liver disease. J Pharm Sci. 2017;106(9):2295–301. https://doi.org/10.1016/j.xphs.2017.03.023
62. Schaefer M, Morinaga G, Matsui A, Schänzle G, Bischoff D, Süssmuth RD. Quantitative expression of hepatobiliary transporters and functional uptake of substrates in hepatic two-dimensional sandwich cultures: a comparative evaluation of upcyte and primary human hepatocytes. Drug Metab Dispos. 2018;46(2):166–77. https://doi.org/10.1124/dmd.117.078238
63. Funk C, Pantze M, Jehle L, Ponelle C, Scheuermann G, Lazendic M, et al. Troglitazone-induced intrahepatic cholestasis by an interference with the hepatobiliary export of bile acids in male and female rats. Correlation with the gender difference in troglitazone sulfate formation and the inhibition of the canalicular bile salt export pump (Bsep) by troglitazone and troglitazone sulfate. Toxicology. 2001;167(1):83–98. https://doi.org/10.1016/s0300-483x(01)00460-7
64. Chan R, Benet LZ. Measures of BSEP inhibition in vitro are not useful predictors of DILI. Toxicol Sci. 2018;162(2):499–508. https://doi.org/10.1093/toxsci/kfx284
65. LeCluyse EL, Witek RP, Andersen ME, Powers MJ. Organotypic liver culture models: meeting current challenges in toxicity testing. Crit Rev Toxicol. 2012;42(6):501–48. https://doi.org/10.3109/10408444.2012.682115
66. Ogese MO, Faulkner L, Jenkins RE, French NS, Copple IM, Antoine DJ, et al. Characterization of drug-specific signaling between primary human hepatocytes and immune cells. Toxicol Sci. 2017;158(1):76–89. https://doi.org/10.1093/toxsci/kfx069
67. Persson M. High content screening for prediction of human drug-induced liver injury. In: Chen M, Will Y, eds. Drug-induced liver toxicity. New York: Springer New York; 2018. P. 331–43. https://doi.org/10.1007/978-1-4939-7677-5_16
68. O’Brien PJ, Irwin W, Diaz D, Howard-Cofield E, Krejsa CM, Slaughter MR, et al. High concordance of drug-induced human hepatotoxicity with in vitro cytotoxicity measured in a novel cell-based model using high content screening. Arch Toxicol. 2006;80(9):580–604. https://doi.org/10.1007/s00204-006-0091-3
69. Hong S, Song JM. A 3D cell printing-fabricated HepG2 liver spheroid model for high-content in situ quantification of drug-induced liver toxicity. Biomater Sci. 2021;9(17):5939–50. https://doi.org/10.1039/d1bm00749a
70. Donato M, Tolosa L. High-content screening for the detection of drug-induced oxidative stress in liver cells. Antioxidants (Basel). 2021;10(1):106. https://doi.org/10.3390/antiox10010106
71. Kozak K, Rinn B, Leven O, Emmenlauer M. Strategies and solutions to maintain and retain data from high content imaging, analysis, and screening assays. Methods Mol Biol. 2018;1683:131–48. https://doi.org/10.1007/978-1-4939-7357-6_9
72. Lowe R, Shirley N, Bleackley M, Dolan S, Shafee T. Transcriptomics technologies. PLoS Comput Biol. 2017;13(5):1005457. https://doi.org/10.1371/journal.pcbi.1005457
73. Gupta R, Schrooders Y, Hauser D, van Herwijnen M, Albrecht W, Ter Braak B, et al. Comparing in vitro human liver models to in vivo human liver using RNA-Seq. Arch Toxicol. 2021;95(2):573–89. https://doi.org/10.1007/s00204-020-02937-6
74. Russo MW, Steuerwald N, Norton HJ, Anderson WE, Foureau D, Chalasani N, et al. Profiles of miRNAs in serum in severe acute drug induced liver injury and their prognostic significance. Liver Int. 2017;37(5):757–64. https://doi.org/10.1111/liv.13312
75. De Abrew KN, Overmann GJ, Adams RL, Tiesman JP, Dunavent J, Shan YK, Carr GJ, et al. A novel transcriptomics based in vitro method to compare and predict hepatotoxicity based on mode of action. Toxicology. 2015;328:29–39. https://doi.org/10.1016/j.tox.2014.11.008
76. Ware BR, McVay M, Sunada WY, Khetani SR. Exploring chronic drug effects on microengineered human liver cultures using global gene expression profiling. Toxicol Sci. 2017;157(2):387–98. https://doi.org/10.1093/toxsci/kfx059
77. Cha HJ, Ko MJ, Ahn SM, Ahn JI, Shin HJ, Jeong HS, et al. Identification of classifier genes for hepatotoxicity prediction in non-steroidal anti-inflammatory drugs. Mol Cell Toxicol. 2010;6:247–53. https://doi.org/10.1007/s13273-010-0034-1
78. Ölander M, Wiśniewski JR, Artursson P. Cell-type-resolved proteomic analysis of the human liver. Liver Int. 2020;40(7):1770–80. https://doi.org/10.1111/liv.14452
79. Aebersold R, Mann M. Mass-spectrometric exploration of proteome structure and function. Nature. 2016;537(7620):347–55. https://doi.org/10.1038/nature19949
80. Alvergnas M, Rouleau A, Lucchi G, Heyd B, Ducoroy P, Richert L, et al. Proteomic mapping of bezafibrate-treated human hepatocytes in primary culture using two-dimensional liquid chromatography. Toxicol Lett. 2011;201(2):123–9. https://doi.org/10.1016/j.toxlet.2010.12.015
81. Ramirez T, Daneshian M, Kamp H, Bois FY, Clench MR, Coen M et al. Metabolomics in toxicology and preclinical research. ALTEX. 2013;30(2):209–25. https://doi.org/10.14573/altex.2013.2.209
82. Cuykx M, Rodrigues RM, Laukens K, Vanhaecke T, Covaci A. In vitro assessment of hepatotoxicity by metabolomics: a review. Arch Toxicol. 2018;92(10):3007–29. https://doi.org/10.1007/s00204-018-2286-9
83. Ruiz-Aracama A, Peijnenburg A, Kleinjans J, Jennen D, van Delft J, Hellfrisch C, et al. An untargeted multi-technique metabolomics approach to studying intracellular metabolites of HepG2 cells exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin. BMC Genomics. 2011;12:251. https://doi.org/10.1186/1471-2164-12-251
84. Krajnc E, Visentin M, Gai Z, Stieger B, Samodelov SL, Häusler S, Kullak-Ublick GA. Untargeted metabolomics reveals anaerobic glycolysis as a novel target of the hepatotoxic antidepressant nefazodone. J Pharmacol Exp Ther. 2020;375(2):239–46. https://doi.org/10.1124/jpet.120.000120
85. Rodrigues RM, Kollipara L, Chaudhari U, Sachinidis A, Zahedi RP, Sickmann A, et al. Omics-based responses induced by bosentan in human hepatoma HepaRG cell cultures. Arch Toxicol. 2018;92(6):1939–52. https://doi.org/10.1007/s00204-018-2214-z
Дополнительные файлы
Рецензия
Для цитирования:
Мазеркина И.А. Оценка лекарственной гепатотоксичности in vitro на клеточных моделях (обзор). Безопасность и риск фармакотерапии. 2023;11(2):131-144. https://doi.org/10.30895/2312-7821-2023-11-2-351
For citation:
Mazerkina I.A. In Vitro Assessment of Drug-Induced Liver Injury Using Cell-Based Models: A Review. Safety and Risk of Pharmacotherapy. 2023;11(2):131-144. (In Russ.) https://doi.org/10.30895/2312-7821-2023-11-2-351