Preview

Safety and Risk of Pharmacotherapy

Advanced search

In Vitro Assessment of Drug-Induced Liver Injury Using Cell-Based Models: A Review

https://doi.org/10.30895/2312-7821-2023-11-2-351

Abstract

Drug-induced liver injury (DILI) is the reason for 15–18% of medicinal product recalls from the market. Since interspecies differences often limit the relevance of standard non-clinical tests in vivo, a promising alternative is to develop cell-based in vitro methods.

The aim of the study was to review current advances in cell modelling for the in vitro identification of DILI.

In vitro mechanistic studies of DILI require cells that exhibit activity specific to hepatic metabolising enzymes and transporters. This article reviews the main cell cultures (primary human hepatocytes, immortal cell lines, stem cell-derived hepatocyte-like cells, co-cultures of hepatocytes and non-parenchymal liver cells) and their configurations. The optimisation of cell systems is directed towards enhancing their viability, functionality, compositional and configurational complexity, thus bringing them closer to in vivo models. Potential DILI causes include chemically reactive metabolites, oxidative stress, mitochondrial damage, intracellular accumulation of toxic bile acids resulting from transporter inhibition, and adaptive immune system activation. Accordingly, DILI studies rely on various methods, including innovative technologies for acquisition, storage, and analysis of large datasets (e.g. high-content screening, transcriptomics, proteomics, and metabolomics). Cell models are applicable to both DILI identification and mechanistic studies. Currently, the most promising technologies are omics, complex co-culture models, and organ-on-a-chip systems.

About the Author

I. A. Mazerkina
Scientific Centre for Expert Evaluation of Medicinal Products
Russian Federation

Irina A. Mazerkina, Cand. Sci. (Med.)

8/2 Petrovsky Blvd, Moscow 127051



References

1. Onakpoya IJ, Heneghan CJ, Aronson JK. Post-marketing withdrawal of 462 medicinal products because of adverse drug reactions: a systematic review of the world literature. BMC Med. 2016;4(14):10. https://doi.org/10.1186/s12916-016-0553-2

2. Wouters OJ, McKee M, Luyten J. Estimated research and development investment needed to bring a new medicine to market, 2009–2018. JAMA. 2020;323(9):844–53. https://doi.org/10.1001/jama.2020.1166

3. DiMasi JA, Grabowski HG, Hansen RW. Innovation in the pharmaceutical industry: new estimates of R&D costs. J Health Econ. 2016;47:20–33. https://doi.org/10.1016/j.jhealeco.2016.01.012

4. Sakai C, Iwano S, Yamazaki Y, Ando A, Nakane F, Kouno M, et al. Species differences in the pharmacokinetic parameters of cytochrome P450 probe substrates between experimental animals, such as mice, rats, dogs, monkeys, and microminipigs, and humans. Drug Metab Toxicol. 2014;5:6. https://doi.org/10.4172/2157-7609.1000173

5. Spanhaak S, Cook D, Barnes J, Reynolds J. Species concordance for liver injury. In: Safety Intelligence Program Board. Cambridge, UK: BioWisdom, Ltd; 2008.

6. Hewitt NJ, Gómez Lechón MJ, Houston JB, Hallifax D, Brown HS, Maurel P, et al. Primary hepatocytes: current understanding of the regulation of metabolic enzymes and transporter proteins, and pharmaceutical practice for the use of hepatocytes in metabolism, enzyme induction, transporter, clearance, and hepatotoxicity studies. Drug Metab Rev. 2007;39(1):159–234. https://doi.org/10.1080/03602530601093489

7. Vickers AE, Bentley P, Fisher RL. Consequences of mitochondrial injury induced by pharmaceutical fatty acid oxidation inhibitors is characterized in human and rat liver slices. Toxicol In Vitro. 2006;20(7):1173–82. https://doi.org/10.1016/j.tiv.2006.01.021

8. Edwards RJ, Price RJ, Watts PS, Renwick AB, Tredger JM, Boobis AR, Lake BG. Induction of cytochrome P450 enzymes in cultured precision-cut human liver slices. Drug Metab Dispos. 2003;31(3):282–8. https://doi.org/10.1124/dmd.31.3.282

9. Starokozhko V, Vatakuti S, Schievink B, Merema MT, Asplund A, Synnergren J, et al. Maintenance of drug metabolism and transport functions in human precision-cut liver slices during prolonged incubation for 5 days. Arch Toxicol. 2017;91(5):2079–92. https://doi.org/10.1007/s00204-016-1865-x

10. Hadi M, Westra IM, Starokozhko V, Dragovic S, Merema MT, Groothuis GM. Human precision-cut liver slices as an ex vivo model to study idiosyncratic drug-induced liver injury. Chem Res Toxicol. 2013;26(5):710–20. https://doi.org/10.1021/tx300519p

11. Khetani SR, Kanchagar C, Ukairo O, Krzyzewski S, Moore A, Shi J, et al. Use of micropatterned cocultures to detect compounds that cause drug-induced liver injury in humans. Toxicol Sci. 2013;132(1):107–17. https://doi.org/10.1093/toxsci/kfs326

12. Burkard A, Dähn C, Heinz S, Zutavern A, Sonn tag-Buck V, Maltman D, et al. Generation of proliferating human hepatocytes using Upcyte® technology: characterisation and applications in induction and cytotoxicity assays. Xenobiotica. 2012;42(10):939–56. https://doi.org/10.3109/00498254.2012.675093

13. Segovia-Zafra A, Di Zeo-Sánchez DE, López-Gómez C, Pérez-Valdés Z, García-Fuentes E, Andrade RJ, et al. Preclinical models of idiosyncratic drug-induced liver injury (iDILI): moving towards prediction. Acta Pharm Sin B. 2021;11(12):3685–726. https://doi.org/10.1016/j.apsb.2021.11.013

14. Sison-Young RL, Mitsa D, Jenkins RE, Mottram D, Alexandre E, Richert L, et al. Comparative proteomic characterization of 4 human liver-derived single cell culture models reveals significant variation in the capacity for drug disposition, bioactivation, and detoxication. Toxicol Sci. 2015;147(2):412–24. https://doi.org/10.1093/toxsci/kfv136

15. Saran C, Fu D, Ho H, Klein A, Fallon JK, Honkakoski P, et al. A novel differentiated HuH-7 cell model to examine bile acid metabolism, transport and cholestatic hepatotoxicity. Sci Rep. 2022;12(1):14333. https://doi.org/10.1038/s41598-022-18174-z

16. Schwartz RE, Fleming HE, Khetani SR, Bhatia SN. Pluripotent stem cell-derived hepatocyte-like cells. Biotechnol Adv. 2014;32(2):504–13. https://doi.org/10.1016/j.biotechadv.2014.01.003

17. Imagawa K, Takayama K, Isoyama S, Tanikawa K, Shinkai M, Harada K, et al. Generation of a bile salt export pump deficiency model using patient-specific induced pluripotent stem cell-derived hepatocyte-like cells. Sci Rep. 2017;7:41806. https://doi.org/10.1038/srep41806

18. Nguyen TV, Ukairo O, Khetani SR, McVay M, Kanchagar C, Seghezzi W, et al. Establishment of a hepatocyte-Kupffer cell coculture model for assessment of proinflammatory cytokine effects on metabolizing enzymes and drug transporters. Drug Metab Dispos. 2015;43(5):774–85. https://doi.org/10.1124/dmd.114.061317

19. Baze A, Parmentier C, Hendriks DFG, Hurrell T, Heyd B, Bachellier P, et al. Three-dimensional spheroid primary human hepatocytes in monoculture and coculture with nonparenchymal cells. Tissue Eng Part C Methods. 2018;24(9):534–45. https://doi.org/10.1089/ten.TEC.2018.0134

20. Olsen AL, Bloomer SA, Chan EP, Gaça MD, Georges PC, Sackey B, et al. Hepatic stellate cells require a stiff environment for myofibroblastic differentiation. Am J Physiol Gastrointest Liver Physiol. 2011;301(1):110–8. https://doi.org/10.1152/ajpgi.00412.2010

21. Khetani SR, Berger DR, Ballinger KR, Davidson MD, Lin C, Ware BR. Microengineered liver tissues for drug testing. J Lab Autom. 2015;20(3):216–50. https://doi.org/10.1177/2211068214566939

22. Yokoyama Y, Sasaki Y, Terasaki N, Kawataki T, Takekawa K, Iwase Y, et al. Comparison of drug metabolism and its related hepatotoxic effects in HepaRG, cryopreserved human hepatocytes, and HepG2 cell cultures. Biol Pharm Bull. 2018;41(5):722–32. https://doi.org/10.1248/bpb.b17-00913

23. Wu X, Wang S, Li M, Li J, Shen J, Zhao Y, et al. Conditional reprogramming: next generation cell culture. Acta Pharm Sin B. 2020;10(8):1360–81. https://doi.org/10.1016/j.apsb.2020.01.011

24. Su S, Di Poto C, Roy R, Liu X, Cui W, Kroemer A, Ressom HW. Long-term culture and characterization of patient-derived primary hepatocytes using conditional reprogramming. Exp Biol Med (Maywood). 2019;244(11):857–64. https://doi.org/10.1177/1535370219855398

25. De Bruyn T, Chatterjee S, Fattah S, Keemink J, Nicolaï J, Augustijns P, et al. Sandwich-cultured hepatocytes: utility for in vitro exploration of hepatobiliary drug disposition and drug-induced hepatotoxicity. Expert Opin Drug Metab Toxicol. 2013;9(5):589–616. https://doi.org/10.1517/17425255.2013.773973

26. Yanni SB, Augustijns PF, Benjamin DK Jr, Brouwer KL, Thakker DR, Annaert PP. In vitro investigation of the hepatobiliary disposition mechanisms of the antifungal agent micafungin in humans and rats. Drug Metab Dispos. 2010;38(10):1848–56. https://doi.org/10.1124/dmd.110.033811

27. Matsunaga N, Suzuki K, Nakanishi T, Ogawa M, Imawaka H, Tamai I. Modeling approach for multiple transporters-mediated drug-drug interactions in sandwich-cultured human hepatocytes: effect of cyclosporin A on hepatic disposition of mycophenolic acid phenyl-glucuronide. Drug Metab Pharmacokinet. 2015;30(2):142–8. https://doi.org/10.1016/j.dmpk.2014.10.006

28. Fu D, Cardona P, Ho H, Watkins PB, Brouwer KLR. Novel mechanisms of valproate hepatotoxicity: impaired Mrp2 trafficking and hepatocyte depolarization. Toxicol Sci. 2019;171(2):431–42. https://doi.org/10.1093/toxsci/kfz154

29. Berger DR, Ware BR, Davidson MD, Allsup SR, Khetani SR. Enhancing the functional maturity of induced pluripotent stem cell-derived human hepatocytes by controlled presentation of cell-cell interactions in vitro. Hepatology. 2015;61(4):1370–81. https://doi.org/10.1002/hep.27621

30. Takahashi Y, Hori Y, Yamamoto T, Urashima T, Ohara Y, Tanaka H. 3D spheroid cultures improve the metabolic gene expression profiles of HepaRG cells. Biosci Rep. 2015;35(3):e00208. https://doi.org/10.1042/BSR20150034

31. Bell CC, Dankers ACA, Lauschke VM, Sison-Young R, Jenkins R, Rowe C, et al. Comparison of hepatic 2D sandwich cultures and 3D spheroids for long-term toxicity applications: a multicenter study. Toxicol Sci. 2018;162(2):655–66. https://doi.org/10.1093/toxsci/kfx289

32. Kostadinova R, Boess F, Applegate D, Suter L, Weiser T, Singer T, et al. A long-term three dimensional liver co-culture system for improved prediction of clinically relevant drug-induced hepatotoxicity. Toxicol Appl Pharmacol. 2013;268(1):1–16. https://doi.org/10.1016/j.taap.2013.01.012

33. Vorrink SU, Zhou Y, Ingelman-Sundberg M, Lauschke VM. Prediction of drug-induced hepatotoxicity using long-term stable primary hepatic 3D spheroid cultures in chemically defined conditions. Toxicol Sci. 2018;163(2):655–65. https://doi.org/10.1093/toxsci/kfy058

34. Ide I, Nagao E, Kajiyama S, Mizoguchi N. A novel evaluation method for determining drug-induced hepatotoxicity using 3D bio-printed human liver tissue. Toxicol Mech Methods. 2020;30(3):189–96. https://doi.org/10.1080/15376516.2019.1686795

35. Schmidt K, Berg J, Roehrs V, Kurreck J, Al-Zeer MA. 3D-bioprinted HepaRG cultures as a model for testing long term aflatoxin B1 toxicity in vitro. Toxicol Rep. 2020;7:1578–87. https://doi.org/10.1016/j.toxrep.2020.11.003

36. Deng J, Wei W, Chen Z, Lin B, Zhao W, Luo Y, et al. Engineered liver-on-a-chip platform to mimic liver functions and its biomedical applications: a review. Micromachines (Basel). 2019;10(10):676. https://doi.org/10.3390/mi10100676

37. Rubiano A, Indapurkar A, Yokosawa R, Miedzik A, Rosenzweig B, Arefin A, et al. Characterizing the reproducibility in using a liver microphysiological system for assaying drug toxicity, metabolism, and accumulation. Clin Transl Sci. 2021;14(3):1049–61. https://doi.org/10.1111/cts.12969

38. Picollet-D’hahan N, Zuchowska A, ILemeunier I, Le Gac S. Multiorgan-on-a-chip: a systemic approach to model and decipher inter-organ communication. Trends in Biotechnology. 2021;39(8):788–810. https://doi.org/10.1016/j.tibtech.2020.11.014

39. Bricks T, Paullier P, Legendre A, Fleury MJ, Zeller P, Merlier F, et al. Development of a new microfluidic platform integrating co-cultures of intestinal and liver cell lines. Toxicol Vitro. 2014;28(5):885–95. https://doi.org/10.1016/j.tiv.2014.02.005

40. Oleaga C, Bernabini C, Smith AS, Srinivasan B, Jackson M, McLamb W, et al. Multi-organ toxicity demonstration in a functional human in vitro system composed of four organs. Sci Rep. 2016;6(1):20030. https://doi.org/10.1038/srep20030

41. Weaver RJ, Betts C, Blomme EAG, Gerets HHJ, Gjervig Jensen K, Hewitt PG, et al. Test systems in drug discovery for hazard identification and risk assessment of human drug-induced liver injury. Expert Opin Drug Metab Toxicol. 2017;13(7):767–82. https://doi.org/10.1080/17425255.2017.1341489

42. Benbow JW, Aubrecht J, Banker MJ, Nettleton D, Aleo MD. Predicting safety toleration of pharmaceutical chemical leads: cytotoxicity correlations to exploratory toxicity studies. Toxicol Lett. 2010;197(3):175–82. https://doi.org/10.1016/j.toxlet.2010.05.016

43. Roth AD, Lee MY. Idiosyncratic drug-induced liver injury (IDILI): potential mechanisms and predictive assays. Biomed Res Int. 2017;2017:9176937. https://doi.org/10.1155/2017/9176937

44. Jee A, Sernoskie SC, Uetrecht J. Idiosyncratic drug-induced liver injury: mechanistic and clinical challenges. Int J Mol Sci. 2021;22(6):2954. https://doi.org/10.3390/ijms22062954

45. Devi SS, Palkar PS, Mehendale HM. Measuring covalent binding in hepatotoxicity. Curr Protoc Toxicol. 2007;14:Unit14.6. https://doi.org/10.1002/0471140856.tx1406s32

46. Wang Q, Liu H, Slavsky M, Fitzgerald M, Lu C, O’Shea T. A high-throughput glutathione trapping assay with combined high sensitivity and specificity in high-resolution mass spectrometry by applying product ion extraction and data-dependent neutral loss. J Mass Spectrom. 2019;54(2):158–66. https://doi.org/10.1002/jms.4320

47. Ramachandran A, Jaeschke H. Oxidative stress and acute hepatic injury. Curr Opin Toxicol. 2018;7:17–21. https://doi.org/10.1016/j.cotox.2017.10.011

48. Chen S, Zhang Z, Qing T, Ren Z, Yu D, Couch L, Ning B, Mei N, Shi L, Tolleson WH, Guo L. Activation of the Nrf2 signaling pathway in usnic acid-induced toxicity in HepG2 cells. Arch Toxicol. 2017;91(3):1293–307. https://doi.org/10.1007/s00204-016-1775-y

49. Mihajlovic M, Vinken M. Mitochondria as the target of hepatotoxicity and drug-induced liver injury: molecular mechanisms and detection methods. Int J Mol Sci. 2022;23:3315. https://doi.org/10.3390/ijms23063315

50. Nadanaciva S, Will Y. The role of mitochondrial dysfunction and drug safety. IDrugs. 2009;12(11):706–10. PMID: 19844857

51. Begriche K, Massart J, Robin M, Borgne-Sanchez A, Fromenty B. Drug-induced toxicity on mitochondria and lipid metabolism: mechanistic diversity and deleterious consequences for the liver. J Hepatol. 2011;54(14):773–94. https://doi.org/10.1016/j.jhep.2010.11.006

52. Fromenty B. Alteration of mitochondrial DNA homeostasis in drug-induced liver injury. Food Chem Toxicol. 2020;135:110916. https://doi.org/10.1016/j.fct.2019.110916

53. McKee E, Ferguson M, Bentley A, Marks T. Inhibition of mammalian mitocondrial protein synthesis by oxazolidinones. Antimicrobial Agents Chemother. 2006;50(16):2042–9. https://doi.org/10.1128/AAC.01411-05

54. Kamalian L, Douglas O, Jolly CE, Snoeys J, Simic D, Monshouwer M, et al. Acute metabolic switch assay using glucose/galactose medium in HepaRG cells to detect mitochondrial toxicity. Curr Protoc Toxicol. 2019;80(1):76. https://doi.org/10.1002/cptx.76

55. Nadanaciva S, Willis J, Barker M, Gharaibeh D, Capaldi R, Marusich M, et al. Assessment of drug-induced mitochondrial dysfunction via altered cellular respiration and acidification measured in a 96-well platform. J Bioenerg Biomembr. 2012;44(14):421–37. https://doi.org/10.1007/s10863-012-9446-z

56. Marchetti P, Fovez Q, Germain N, Khamari R, Kluza J. Mitochondrial spare respiratory capacity: mechanisms, regulation, and significance in non-transformed and cancer cells. FASEB J. 2020;34(10):13106–24. https://doi.org/10.1096/fj.202000767R

57. Nadanaciva S, Willis JH, Barker ML, Gharaibeh D, Capaldi RA, Marusich MF, et al. Lateral-flow immunoassay for detecting drug-induced inhibition of mitochondrial DNA replication and mtDNA-encoded protein synthesis. J Immunol Methods. 2009;343(1):1–12. https://doi.org/10.1016/j.jim.2008.12.002

58. Porceddu M, Buron N, Rustin P, Fromenty B, Borgne-Sanchez A. In vitro assessment of mitochondrial toxicity to predict drug-induced liver injury. In: Chen M, Will Y, eds. Drug-induced liver toxicity. New York: Springer New York; 2018. P. 283–300. https://doi.org/10.1007/978-1-4939-7677-5_14

59. Perez MJ, Briz O. Bile-acid-induced cell injury and protection. World J Gastroenterol. 2009;15(14):1677–89. https://doi.org/10.3748/wjg.15.1677

60. Garzel B, Yang H, Zhang L, Huang SM, Polli JE, Wang H. The role of bile salt export pump gene repression in drug-induced cholestatic liver toxicity. Drug Metab Dispos. 2014;42(3):318–22. https://doi.org/10.1124/dmd.113.054189

61. Stieger B, Mahdi ZM. Model systems for studying the role of canalicular efflux transporters in drug-induced cholestatic liver disease. J Pharm Sci. 2017;106(9):2295–301. https://doi.org/10.1016/j.xphs.2017.03.023

62. Schaefer M, Morinaga G, Matsui A, Schänzle G, Bischoff D, Süssmuth RD. Quantitative expression of hepatobiliary transporters and functional uptake of substrates in hepatic two-dimensional sandwich cultures: a comparative evaluation of upcyte and primary human hepatocytes. Drug Metab Dispos. 2018;46(2):166–77. https://doi.org/10.1124/dmd.117.078238

63. Funk C, Pantze M, Jehle L, Ponelle C, Scheuermann G, Lazendic M, et al. Troglitazone-induced intrahepatic cholestasis by an interference with the hepatobiliary export of bile acids in male and female rats. Correlation with the gender difference in troglitazone sulfate formation and the inhibition of the canalicular bile salt export pump (Bsep) by troglitazone and troglitazone sulfate. Toxicology. 2001;167(1):83–98. https://doi.org/10.1016/s0300-483x(01)00460-7

64. Chan R, Benet LZ. Measures of BSEP inhibition in vitro are not useful predictors of DILI. Toxicol Sci. 2018;162(2):499–508. https://doi.org/10.1093/toxsci/kfx284

65. LeCluyse EL, Witek RP, Andersen ME, Powers MJ. Organotypic liver culture models: meeting current challenges in toxicity testing. Crit Rev Toxicol. 2012;42(6):501–48. https://doi.org/10.3109/10408444.2012.682115

66. Ogese MO, Faulkner L, Jenkins RE, French NS, Copple IM, Antoine DJ, et al. Characterization of drug-specific signaling between primary human hepatocytes and immune cells. Toxicol Sci. 2017;158(1):76–89. https://doi.org/10.1093/toxsci/kfx069

67. Persson M. High content screening for prediction of human drug-induced liver injury. In: Chen M, Will Y, eds. Drug-induced liver toxicity. New York: Springer New York; 2018. P. 331–43. https://doi.org/10.1007/978-1-4939-7677-5_16

68. O’Brien PJ, Irwin W, Diaz D, Howard-Cofield E, Krejsa CM, Slaughter MR, et al. High concordance of drug-induced human hepatotoxicity with in vitro cytotoxicity measured in a novel cell-based model using high content screening. Arch Toxicol. 2006;80(9):580–604. https://doi.org/10.1007/s00204-006-0091-3

69. Hong S, Song JM. A 3D cell printing-fabricated HepG2 liver spheroid model for high-content in situ quantification of drug-induced liver toxicity. Biomater Sci. 2021;9(17):5939–50. https://doi.org/10.1039/d1bm00749a

70. Donato M, Tolosa L. High-content screening for the detection of drug-induced oxidative stress in liver cells. Antioxidants (Basel). 2021;10(1):106. https://doi.org/10.3390/antiox10010106

71. Kozak K, Rinn B, Leven O, Emmenlauer M. Strategies and solutions to maintain and retain data from high content imaging, analysis, and screening assays. Methods Mol Biol. 2018;1683:131–48. https://doi.org/10.1007/978-1-4939-7357-6_9

72. Lowe R, Shirley N, Bleackley M, Dolan S, Shafee T. Transcriptomics technologies. PLoS Comput Biol. 2017;13(5):1005457. https://doi.org/10.1371/journal.pcbi.1005457

73. Gupta R, Schrooders Y, Hauser D, van Herwijnen M, Albrecht W, Ter Braak B, et al. Comparing in vitro human liver models to in vivo human liver using RNA-Seq. Arch Toxicol. 2021;95(2):573–89. https://doi.org/10.1007/s00204-020-02937-6

74. Russo MW, Steuerwald N, Norton HJ, Anderson WE, Foureau D, Chalasani N, et al. Profiles of miRNAs in serum in severe acute drug induced liver injury and their prognostic significance. Liver Int. 2017;37(5):757–64. https://doi.org/10.1111/liv.13312

75. De Abrew KN, Overmann GJ, Adams RL, Tiesman JP, Dunavent J, Shan YK, Carr GJ, et al. A novel transcriptomics based in vitro method to compare and predict hepatotoxicity based on mode of action. Toxicology. 2015;328:29–39. https://doi.org/10.1016/j.tox.2014.11.008

76. Ware BR, McVay M, Sunada WY, Khetani SR. Exploring chronic drug effects on microengineered human liver cultures using global gene expression profiling. Toxicol Sci. 2017;157(2):387–98. https://doi.org/10.1093/toxsci/kfx059

77. Cha HJ, Ko MJ, Ahn SM, Ahn JI, Shin HJ, Jeong HS, et al. Identification of classifier genes for hepatotoxicity prediction in non-steroidal anti-inflammatory drugs. Mol Cell Toxicol. 2010;6:247–53. https://doi.org/10.1007/s13273-010-0034-1

78. Ölander M, Wiśniewski JR, Artursson P. Cell-type-resolved proteomic analysis of the human liver. Liver Int. 2020;40(7):1770–80. https://doi.org/10.1111/liv.14452

79. Aebersold R, Mann M. Mass-spectrometric exploration of proteome structure and function. Nature. 2016;537(7620):347–55. https://doi.org/10.1038/nature19949

80. Alvergnas M, Rouleau A, Lucchi G, Heyd B, Ducoroy P, Richert L, et al. Proteomic mapping of bezafibrate-treated human hepatocytes in primary culture using two-dimensional liquid chromatography. Toxicol Lett. 2011;201(2):123–9. https://doi.org/10.1016/j.toxlet.2010.12.015

81. Ramirez T, Daneshian M, Kamp H, Bois FY, Clench MR, Coen M et al. Metabolomics in toxicology and preclinical research. ALTEX. 2013;30(2):209–25. https://doi.org/10.14573/altex.2013.2.209

82. Cuykx M, Rodrigues RM, Laukens K, Vanhaecke T, Covaci A. In vitro assessment of hepatotoxicity by metabolomics: a review. Arch Toxicol. 2018;92(10):3007–29. https://doi.org/10.1007/s00204-018-2286-9

83. Ruiz-Aracama A, Peijnenburg A, Kleinjans J, Jennen D, van Delft J, Hellfrisch C, et al. An untargeted multi-technique metabolomics approach to studying intracellular metabolites of HepG2 cells exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin. BMC Genomics. 2011;12:251. https://doi.org/10.1186/1471-2164-12-251

84. Krajnc E, Visentin M, Gai Z, Stieger B, Samodelov SL, Häusler S, Kullak-Ublick GA. Untargeted metabolomics reveals anaerobic glycolysis as a novel target of the hepatotoxic antidepressant nefazodone. J Pharmacol Exp Ther. 2020;375(2):239–46. https://doi.org/10.1124/jpet.120.000120

85. Rodrigues RM, Kollipara L, Chaudhari U, Sachinidis A, Zahedi RP, Sickmann A, et al. Omics-based responses induced by bosentan in human hepatoma HepaRG cell cultures. Arch Toxicol. 2018;92(6):1939–52. https://doi.org/10.1007/s00204-018-2214-z


Supplementary files

Review

For citations:


Mazerkina I.A. In Vitro Assessment of Drug-Induced Liver Injury Using Cell-Based Models: A Review. Safety and Risk of Pharmacotherapy. 2023;11(2):131-144. (In Russ.) https://doi.org/10.30895/2312-7821-2023-11-2-351

Views: 1376


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2312-7821 (Print)
ISSN 2619-1164 (Online)