Toxicity Associated with Immune Checkpoint Inhibitors: Analysis of Immune-Related Adverse Events with a Pembrolizumab Biosimilar (Pembroria)
https://doi.org/10.30895/2312-7821-2023-11-2-360
Abstract
In recent years, there has been a significant increase in the number of patients with malignancies treated with immune checkpoint inhibitors (ICIs), including the anti-programmed cell death protein 1 (anti–PD-1) agent pembrolizumab. One of the important aspects of conducting clinical trials with ICIs is the assessment of the risk of developing immune-related adverse events (irAEs).
The aim of the study was to evaluate the safety of a pembrolizumab biosimilar (BCD-201, Pembroria) compared with a reference medicinal product using the results of a phase I clinical trial and the available medical literature.
Materials and methods. A phase I double-blind, randomised, controlled clinical trial (BCD-201-1) has been conducted in patients with advanced melanoma and non-small-cell lung cancer (n=131). Patients were randomly allocated in a 1:1 ratio to receive either BCD-201 (Pembroria) or the reference medicinal product (Keytruda®), administered intravenously at a dose of 200 mg every 3 weeks for up to 24 weeks or until disease progression or unacceptable toxicity is observed. Since the trial results remain blinded at the time of this writing, treatment group data are masked.
Results. The study demonstrated the equivalence of pharmacokinetics and comparable safety profiles of pembrolizumab biosimilar and reference medicinal products. Both medicinal products were well tolerated; the frequency of all-grade irAEs was comparable between treatment groups (21.2% in Group 1 vs 21.5% in Group 2). Most irAEs were mild to moderate, with the exception of a case of Grade 3 diarrhoea and immune-mediated enterocolitis in one study subject; there were no statistically significant differences in the median time to development of irAEs between treatment groups (Р=0.22, two-sided Wilcoxon test).
Conclusions. The analysed period of the BCD-201-1 trial demonstrated comparable safety characteristics of Pembroria and Keytruda®, which is consistent with the published safety data on the latter. Information on the similarity of long-term safety profiles of the pembrolizumab biosimilar and the reference medicinal product will be obtained from ongoing clinical trials.
Keywords
About the Authors
M. Yu. FedyaninRussian Federation
Mikhail Yu. Fedyanin, Dr. Sci. (Med.), Professor
23 Kashirskoe Hwy, Moscow 115478
A. V. Snegovoy
Russian Federation
Anton V. Snegovoy, Dr. Sci. (Med.), Professor
3 2nd Botkinskiy Dr., Moscow 125284
V. V. Breder
Russian Federation
Valeriy V. Breder, Dr. Sci. (Med.)
23 Kashirskoe Hwy, Moscow 115478
Yu. N. Linkova
Russian Federation
Yulia N. Linkova
Rm 89, 38/1 Svyazi St., Strelna, St. Petersburg 198515
A. V. Zinkina-Orikhan
Russian Federation
Arina V. Zinkina-Orikhan
Rm 89, 38/1 Svyazi St., Strelna, St. Petersburg 198515
S. B. Setkina
Russian Federation
Svetlana B. Setkina, Cand. Sci. (Pharm.)
Rm 89, 38/1 Svyazi St., Strelna, St. Petersburg 198515
S. N. Fogt
Russian Federation
Sergei N. Fogt
Rm 89, 38/1 Svyazi St., Strelna, St. Petersburg 198515
V. S. Chistiakov
Russian Federation
Vladimir S. Chistiakov
Rm 89, 38/1 Svyazi St., Strelna, St. Petersburg 198515
N. A. Kravtsova
Russian Federation
Nadezhda A. Kravtsova
Rm 89, 38/1 Svyazi St., Strelna, St. Petersburg 198515
References
1. Stege H, Haist M, Nikfarjam U, Schultheis M, Heinz J, Pemler S, et al. The status of adjuvant and neoadjuvant melanoma therapy, new developments and upcoming challenges. Target Oncol. 2021;16(5):537–52. https://doi.org/10.1007/s11523-021-00840-3
2. Qiu Z, Chen Z, Zhang C, Zhong W. Achievements and futures of immune checkpoint inhibitors in non-small cell lung cancer. Exp Hematol Oncol. 2019;8:19. https://doi.org/10.1186/s40164-019-0143-z
3. Lopez-Beltran A, Cimadamore A, Blanca A, Massari F, Vau N, Scarpelli M, et al. Immune checkpoint inhibitors for the treatment of bladder cancer. Cancers (Basel). 2021;13(1):131. https://doi.org/10.3390/cancers13010131
4. Márquez-Rodas I, Cerezuela P, Soria A, Berrocal A, Riso A, González-Cao M, Martín-Algarra S. Immune checkpoint inhibitors: therapeutic advances in melanoma. Ann Transl Med. 2015;3(18):267. PMID: 26605313
5. Feng MY, Chan LL, Chan SL. Drug treatment for advanced hepatocellular carcinoma: first-line and beyond. Curr Oncol. 2022;29(8):5489–507. https://doi.org/10.3390/curroncol29080434
6. Resch I, Bruchbacher A, Franke J, Fajkovic H, Remzi M, Shariat SF, et al. Outcome of immune checkpoint inhibitors in metastatic renal cell carcinoma across different treatment lines. ESMO Open. 2021;6(4):100122. https://doi.org/10.1016/j.esmoop.2021.100122
7. Wang DY, Salem JE, Cohen JV, Chandra S, Menzer C, Ye F, et al. Fatal toxic effects associated with immune checkpoint inhibitors: a systematic review and meta-analysis. JAMA Oncol. 2018;4(12):1721–8. https://doi.org/10.1001/jamaoncol.2018.3923
8. El Osta B, Hu F, Sadek R, Chintalapally R, Tang SC. Not all immune-checkpoint inhibitors are created equal: meta-analysis and systematic review of immune-related adverse events in cancer trials. Crit Rev Oncol Hematol. 2017;119:1–12. https://doi.org/10.1016/j.critrevonc.2017.09.002
9. Vaddepally R, Doddamani R, Sodavarapu S, Madam NR, Katkar R, Kutadi AP, et al. Review of immune-related adverse events (irAEs) in non-small-cell lung cancer (NSCLC)—their incidence, management, multi-organ irAEs, and rechallenge. Biomedicines. 2022;10(4):790. https://doi.org/10.3390/biomedicines10040790
10. Olsen TA, Zhuang TZ, Caulfield S, Martini DJ, Brown JT, Carthon BC, et al. Advances in knowledge and management of immune-related adverse events in cancer immunotherapy. Front Endocrinol (Lausanne). 2022;13:779915. https://doi.org/10.3389/fendo.2022.779915
11. Allouchery M, Beuvon C, Pérault-Pochat MC, Roblot P, Puyade M, Martin M. Safety of immune check-point inhibitor resumption after interruption for immune-related adverse events, a narrative review. Cancers (Basel). 2022;14(4):955. https://doi.org/10.3390/cancers14040955
12. Kubo T, Hirohashi Y, Tsukahara T, Kanaseki T, Murata K, Morita R, Torigoe T. Immunopathological basis of immune-related adverse events induced by immune checkpoint blockade therapy. Immunol Med. 2022;45(2):108–18. https://doi.org/10.1080/25785826.2021.1976942
13. Esfahani K, Elkrief A, Calabrese C, Lapointe R, Hudson M, Routy B, et al. Moving towards personalized treatments of immune-related adverse events. Nat Rev Clin Oncol. 2020;17(8):504–15. https://doi.org/10.1038/s41571-020-0352-8
14. Das R, Bar N, Ferreira M, Newman AM, Zhang L, Bailur JK, et al. Early B cell changes predict autoimmunity following combination immune checkpoint blockade. J Clin Invest. 2018;128(2):715–20. https://doi.org/10.1172/JCI96798
15. Kimbara S, Fujiwara Y, Iwama S, Ohashi K, Kuchiba A, Arima H, et al. Association of antithyroglobulin antibodies with the development of thyroid dysfunction induced by nivolumab. Cancer Sci. 2018;109(11):3583–90. https://doi.org/10.1111/cas.13800
16. Byrne EH, Fisher DE. Immune and molecular correlates in melanoma treated with immune checkpoint blockade. Cancer. 2017;123(S11):2143–53. https://doi.org/10.1002/cncr.30444
17. Bergqvist V, Hertervig E, Gedeon P, Kopljar M, Griph H, Kinhult S, et al. Vedolizumab treatment for immune checkpoint inhibitor-induced enterocolitis. Cancer Immunol Immunother. 2017;66(5):581–92. https://doi.org/10.1007/s00262-017-1962-6
18. Iwama S, De Remigis A, Callahan MK, Slovin SF, Wolchok JD, Caturegli P. Pituitary expression of CTLA-4 mediates hypophysitis secondary to administration of CTLA-4 blocking antibody. Sci Transl Med. 2014;6(230):230ra45. https://doi.org/10.1126/scitranslmed.3008002
19. Ramos-Casals M, Brahmer JR, Callahan MK, Flores-Chávez A, Keegan N, Khamashta MA, et al. Immune-related adverse events of checkpoint inhibitors. Nat Rev Dis Primers. 2020;6(1):38. https://doi.org/10.1038/s41572-020-0160-6
20. Dubin K, Callahan MK, Ren B, Khanin R, Viale A, Ling L, et al. Intestinal microbiome analyses identify melanoma patients at risk for checkpoint-blockade-induced colitis. Nat Commun. 2016;7:10391. https://doi.org/10.1038/ncomms10391
21. Sabel MS, Lee J, Cai S, Englesbe MJ, Holcombe S, Wang S. Sarcopenia as a prognostic factor among patients with stage III melanoma. Ann Surg Oncol. 2011;18(13):3579–85. https://doi.org/10.1245/s10434-011-1976-9
22. Valpione S, Pasquali S, Campana LG, Piccin L, Mocellin S, Pigozzo J, Chiarion-Sileni V. Sex and interleukin-6 are prognostic factors for autoimmune toxicity following treatment with anti-CTLA4 blockade. J Transl Med. 2018;16(1):94. https://doi.org/10.1186/s12967-018-1467-x
23. Kehl KL, Yang S, Awad MM, Palmer N, Kohane IS, Schrag D. Pre-existing autoimmune disease and the risk of immune-related adverse events among patients receiving checkpoint inhibitors for cancer. Cancer Immunol Immunother. 2019;68(6):917–26. https://doi.org/10.1007/s00262-019-02321-z
24. Solomon B, Young RJ, Rischin D. Head and neck squamous cell carcinoma: genomics and emerging biomarkers for immunomodulatory cancer treatments. Semin Cancer Biol. 2018;52(Pt 2):228–40. https://doi.org/10.1016/j.semcancer.2018.01.008
25. Osorio JC, Ni A, Chaft JE, Pollina R, Kasler MK, Stephens D, et al. Antibody-mediated thyroid dysfunction during T-cell checkpoint blockade in patients with non-small-cell lung cancer. Ann Oncol. 2017;28(3):583–9. https://doi.org/10.1093/annonc/mdw640
26. Toi Y, Sugawara S, Sugisaka J, Ono H, Kawashima Y, Aiba T, et al. Profiling preexisting antibodies in patients treated with anti-PD-1 therapy for advanced non-small cell lung cancer. JAMA Oncol. 2019;5(3):376–83. https://doi.org/10.1001/jamaoncol.2018.5860
27. Suzuki S, Ishikawa N, Konoeda F, Seki N, Fukushima S, Takahashi K, et al. Nivolumab-related myasthenia gravis with myositis and myocarditis in Japan. Neurology. 2017;89(11):1127–34. https://doi.org/10.1212/WNL.0000000000004359
28. Clavel T, Gomes-Neto JC, Lagkouvardos I, Ramer-Tait AE. Deciphering interactions between the gut microbiota and the immune system via microbial cultivation and minimal microbiomes. Immunol Rev. 2017;279(1):8–22. https://doi.org/10.1111/imr.12578
29. Cappelli LC, Dorak MT, Bettinotti MP, Bingham CO, Shah AA. Association of HLA-DRB1 shared epitope alleles and immune checkpoint inhibitor-induced inflammatory arthritis. Rheumatology (Oxford). 2019;58(3):476–80. https://doi.org/10.1093/rheumatology/key358
30. Hasan Ali O, Berner F, Bomze D, Fässler M, Diem S, Cozzio A, et al. Human leukocyte antigen variation is associated with adverse events of checkpoint inhibitors. Eur J Cancer. 2019;107:8–14. https://doi.org/10.1016/j.ejca.2018.11.009
31. Fountzilas E, Lampaki S, Koliou GA, Koumarianou A, Levva S, Vagionas A, et al. Real-world safety and efficacy data of immunotherapy in patients with cancer and autoimmune disease: the experience of the Hellenic Cooperative Oncology Group. Cancer Immunol Immunother. 2022;71(2):327–37. https://doi.org/10.1007/s00262-021-02985-6
32. Danlos FX, Voisin AL, Dyevre V, Michot JM, Routier E, Taillade L, et al. Safety and efficacy of anti-programmed death 1 antibodies in patients with cancer and pre-existing autoimmune or inflammatory disease. Eur J Cancer. 2018;91:21–9. https://doi.org/10.1016/j.ejca.2017.12.008
33. Robert C, Hwu WJ, Hamid O, Ribas A, Weber JS, Daud AI, et al. Long-term safety of pembrolizumab monotherapy and relationship with clinical outcome: a landmark analysis in patients with advanced melanoma. Eur J Cancer. 2021;144:182–91. https://doi.org/10.1016/j.ejca.2020.11.010
34. Bang A, Wilhite TJ, Pike LRG, Cagney DN, Aizer AA, Taylor A, et al. Multicenter evaluation of the tolerability of combined treatment with PD-1 and CTLA-4 immune checkpoint inhibitors and palliative radiation therapy. Int J Radiat Oncol Biol Phys. 2017;98(2):344–51. https://doi.org/10.1016/j.ijrobp.2017.02.003
35. Ribas A, Hodi FS, Callahan M, Konto C, Wolchok J. Hepatotoxicity with combination of vemurafenib and ipilimumab. N Engl J Med. 2013;368(14):1365–6. https://doi.org/10.1056/NEJMc1302338
36. Vizcarrondo FR, Patel SP, Pennell NA, Pakkala S, West H, Kratzke R, et al., Phase 1b study of crizotinib in combination with pembrolizumab in patients (pts) with untreated ALK-positive (+) advanced non-small cell lung cancer (NSCLC). Annals of Oncology. 2016;27(Suppl 6):vi416–54. https://doi.org/10.1093/annonc/mdw383.91
37. Ahn M-J, Yang J, Yu H, Saka H, Ramalingam S, Goto K, et al. 136O: osimertinib combined with durvalumab in EGFR-mutant non-small cell lung cancer: results from the TATTON phase Ib trial. Journal of Thoracic Oncology. 2016;11(4):S115. https://doi.org/10.1016/S1556-0864(16)30246-5
38. Seethapathy H, Zhao S, Chute DF, Zubiri L, Oppong Y, Strohbehn I, et al. The incidence, causes, and risk factors of acute kidney injury in patients receiving immune checkpoint inhibitors. Clin J Am Soc Nephrol. 2019;14(12):1692–700. https://doi.org/10.2215/CJN.00990119
39. Raghavan R, Shawar S. Mechanisms of drug-induced interstitial nephritis. Adv Chronic Kidney Dis. 2017;24(2):64–71. https://doi.org/10.1053/j.ackd.2016.11.004
40. Abu-Sbeih H, Herrera LN, Tang T, Altan M, Chaftari AP, Okhuysen PC, et al. Impact of antibiotic therapy on the development and response to treatment of immune checkpoint inhibitor-mediated diarrhea and colitis. J Immunother Cancer. 2019;7(1):242. https://doi.org/10.1186/s40425-019-0714-x
41. Protsenko SA, Antimonik NYu, Bershtein LM, Zhukova NV, Novik AV, Nosov DA, et al. Practical guidelines for the management of immune-related adverse events. Malignant tumours. 2020;10(3s2):168–99 (In Russ.). https://doi.org/10.18027/2224-5057-2020-10-3s2-50
42. Haanen JBAG, Carbonnel F, Robert C, Kerr KM, Peters S, Larkin J, et al. Management of toxicities from immunotherapy: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2017;28(suppl_4):iv119–42. https://doi.org/10.1093/annonc/mdx225
43. Kostine M, Finckh A, Bingham CO, Visser K, Leipe J, Schulze-Koops H, et al. EULAR points to consider for the diagnosis and management of rheumatic immune-related adverse events due to cancer immunotherapy with checkpoint inhibitors. Ann Rheum Dis. 2021;80(1):36–48. https://doi.org/10.1136/annrheumdis-2020-217139
44. Thompson JA, Schneider BJ, Brahmer J, Andrews S, Armand P, Bhatia S, et al. NCCN Guidelines Insights: management of immunotherapy-related toxicities, version 1.2020. J Natl Compr Canc Netw. 2020;18(3):230–41. https://doi.org/10.6004/jnccn.2020.0012
45. Ito M, Fujiwara S, Fujimoto D, Mori R, Yoshimura H, Hata A, et al. Rituximab for nivolumab plus ipilimumab-induced encephalitis in a small-cell lung cancer patient. Ann Oncol. 2017;28(9):2318–9. https://doi.org/10.1093/annonc/mdx252
46. Crusz SM, Radunovic A, Shepherd S, Shah S, Newey V, Phillips M, et al. Rituximab in the treatment of pembrolizumab-induced myasthenia gravis. Eur J Cancer. 2018;102:49–51. https://doi.org/10.1016/j.ejca.2018.07.125
47. Esfahani K, Buhlaiga N, Thébault P, Lapointe R, Johnson NA, Miller WH Jr. Alemtuzumab for immune-related myocarditis due to PD-1 therapy. N Engl J Med. 2019;380(24):2375–6. https://doi.org/10.1056/NEJMc1903064
48. Salem JE, Allenbach Y, Vozy A, Brechot N, Johnson DB, Moslehi JJ, Kerneis M. Abatacept for severe immune checkpoint inhibitor-associated myocarditis. N Engl J Med. 2019;380(24):2377–9. https://doi.org/10.1056/NEJMc1901677
49. Kim ST, Tayar J, Trinh VA, Suarez-Almazor M, Garcia S, Hwu P, et al. Successful treatment of arthritis induced by checkpoint inhibitors with tocilizumab: a case series. Ann Rheum Dis. 2017;76(12):2061–4. https://doi.org/10.1136/annrheumdis-2017-211560
50. Komissarova VA. Risk minimization measures in pharmacovigilance: review of national and international experience. Good Clinical Practice. 2019;(3):33–43 (In Russ.). https://doi.org/10.24411/2588-0519-2019-10081
51. Robert C, Schachter J, Long GV, Arance A, Grob JJ, Mortier L, et al. Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med. 2015;372(26):2521–32. https://doi.org/10.1056/NEJMoa1503093
Supplementary files
Review
For citations:
Fedyanin M.Yu., Snegovoy A.V., Breder V.V., Linkova Yu.N., Zinkina-Orikhan A.V., Setkina S.B., Fogt S.N., Chistiakov V.S., Kravtsova N.A. Toxicity Associated with Immune Checkpoint Inhibitors: Analysis of Immune-Related Adverse Events with a Pembrolizumab Biosimilar (Pembroria). Safety and Risk of Pharmacotherapy. 2023;11(2):215-230. (In Russ.) https://doi.org/10.30895/2312-7821-2023-11-2-360