Preview

Безопасность и риск фармакотерапии

Расширенный поиск

Возможности и перспективы доклинической оценки лекарственной безопасности с использованием альтернативных методов: опыт реализации программы «Токсикология в XXI веке» в США

https://doi.org/10.30895/2312-7821-2023-379

Полный текст:

Аннотация

Актуальность. Консорциумом Tox21 (США) разработана и успешно реализуется «Программа по токсикологии в XXI веке», направленная на переход к новой стратегии, согласно которой изучение токсичности химических веществ на животных будет заменено широким спектром подходов, базирующихся на тестах in vitro и вычислительных методах.

Цель. Обзор информации об альтернативных моделях in vitro, разработанных для изучения токсичности химических соединений в рамках программы «Токсикология в XXI веке».

Обсуждение. Анализ информации, представленной Национальной токсикологической программой США (National Toxicology Program), Агентством по охране окружающей среды США (Environmental Protection Agency), Национальным центром развития трансляционных наук (National Center for Advancing Translational Sciences) и другими участниками консорциума Tox21 на официальных сайтах и в научной литературе, показал, что к настоящему времени разработана технология высокопроизводительного скрининга для тестирования безопасности химических веществ. С использованием этой технологии сформирована библиотека химических соединений Tox21 10К. Находящаяся в ней информация успешно используется для создания моделей, позволяющих прогнозировать токсичность химических веществ до начала доклинических исследований. Предложены новые подходы к изучению безопасности соединений на клеточных линиях человека для замены in vivo исследований. Создание моделей с использованием органов-на-чипах, мультиорганов-на-чипах и органоидов позволит преодолеть недостатки и ограничения применения моделей на основе клеточных линий и обеспечить более точное воспроизведение сложных взаимодействий клеток и матрикса, а также органов между собой. Новые технологии транскриптомики (токсикогеномики), разработанные в ходе реализации программы Tox21 для выявления новых биомаркеров и генных сигнатур токсичности химических веществ, могут быть применены для классификации токсикантов в соответствии со степенью риска для здоровья и выявления потенциальных побочных эффектов задолго до того, как будут обнаружены какие-либо патологические изменения в организме. Межведомственный координационный комитет по валидации альтернативных методов (Interagency Coordinating Committee on the Validation of Alternative Methods) проводит техническую оценку альтернативных методов испытаний и способствует их внедрению в регуляторную практику.

Выводы. Разработанные в рамках программы Тох21 новые подходы к изучению токсичности позволят осуществить переход от тестирования потенциальных лекарственных средств in vivo к компьютерным и in vitro методам, обеспеченным новыми инструментами и технологиями.

Об авторе

В. Н. Перфилова
Федеральное государственное бюджетное образовательное учреждение высшего образования «Волгоградский государственный медицинский университет» Министерства здравоохранения Российской Федерации; Государственное бюджетное учреждение «Волгоградский медицинский научный центр»
Россия

Перфилова Валентина Николаевна, д-р биол. наук, профессор

Площадь Павших Борцов, д. 1, Волгоград, 400131



Список литературы

1. Hamm J, Sullivan K, Clippinger AJ, Strickland J, Bell S, Bhhatarai B, et al. Alternative approaches for identifying acute systemic toxicity: moving from research to regulatory testing. Toxicol In Vitro. 2017;41:245–59. https://doi.org/10.1016/j.tiv.2017.01.004

2. Choudhuri S, Patton GW, Chanderbhan RF, Mattia A, Klaassen CD. From classical toxicology to Tox21: some critical conceptual and technological advances in the molecular understanding of the toxic response beginning from the last quarter of the 20th century. Toxicol Sci. 2018;161(1):5–22. https://doi.org/10.1093/toxsci/kfx186

3. Pound P, Ritskes-Hoitinga M. Is it possible to overcome issues of external validity in preclinical animal research? Why most animal models are bound to fail. J Transl Med. 2018;16:304. https://doi.org/10.1186/s12967-018-1678-1

4. McGonigle P, Ruggeri B. Animal models of human disease: challenges in enabling translation. Biochem Pharmacol. 2014;87(1):162–71. https://doi.org/10.1016/j.bcp.2013.08.006

5. Felter SP, Boobis AR, Botham PA, Brousse A, Greim H, Hollnagel HM, et al. Hazard identification, classification, and risk assessment of carcinogens: too much or too little? — Report of an ECETOC workshop. Crit Rev Toxicol. 2020;50(1):72–95. https://doi.org/10.1080/10408444.2020.1727843

6. Wolf CR, Henderson CJ. Use of transgenic animals in understanding molecular mechanisms of toxicity. J Pharm Pharmacol. 1998;50(6):567–74. https://doi.org/10.1111/j.2042-7158.1998.tb06889.x

7. Wang P, Shehu AI, Ma X. The opportunities of metabolomics in drug safety evaluation. Curr Pharmacol Rep. 2017;3(1):10–5. https://doi.org/10.1007/s40495-016-0079-5

8. Thomas RS, Paules RS, Simeonov A, Fitzpatrick SC, Crofton KM, Casey WM, et al. The US Federal Tox21 Program: a strategic and operational plan for continued leadership. ALTEX. 2018;35(2):163–8. https://doi.org/10.14573/altex.1803011

9. Roper C, Tanguay RL. Tox21 and adverse outcome pathways. In: Roper C, Tanguay RL, eds. An introduction to interdisciplinary toxicology. From molecules to man. Elsevier; 2020. P. 559–68.

10. Richard AM, Huang R, Waidyanatha S, Shinn P, Collins BJ, Thillainadarajahet I, et al. The Tox21 10K compound library: collaborative chemistry advancing to xicology. Chem Res Toxicol. 2021;34(2):189–216. https://doi.org/10.1021/acs.chemrestox.0c00264

11. Mav D, Shah RR, Howard BE, Auerbach SS, Bushel PR, Collins JB, et al. A hybrid gene selection approach to create the S1500+ targeted gene sets for use in high-throughput transcriptomics. PLoS One. 2018;13(2):e0191105. https://doi.org/10.1371/journal.pone.0191105

12. Borrel A, Auerbach SS, Houck KA, Kleinstreuer NC. Tox21BodyMap: a webtool to map chemical effects on the human body. Nucleic Acids Research. 2020;48(W1):W472–6. https://doi.org/10.1093/nar/gkaa433

13. Attene-Ramos MS, Miller N, Huang R, Michael S, Itkin M, Kavlock RJ, et al. The Tox21 robotic platform for the assessment of environmental chemicals — from vision to reality. Drug Discov Today. 2013;18(15–16):716–23. https://doi.org/10.1016/j.drudis.2013.05.015

14. Tice RR, Austin CP, Kavlock RJ, Bucher JR. Improving the human hazard characterization of chemicals: a Tox21 update. Environ Health Perspect. 2013;121(7):756–65. https://doi.org/10.1289/ehp.1205784

15. Sakamuru S, Huang R, Xia M. Use of Tox21 screening data to evaluate the COVID-19 drug candidates for their potential toxic effects and related pathways. Front Pharmacol. 2022;13:935399. https://doi.org/10.3389/fphar.2022.935399

16. Xia M, Huang R, Witt KL, Southall N, Fostel J, Cho MH, et al. Compound cytotoxicity profiling using quantitative high-throughput screening. Environ Health Perspect. 2008;116(3):284–91. https://doi.org/10.1289/ehp.10727

17. Huang R, Southall N, Cho MH, Xia M, Inglese J, Austin CP. Characterization of diversity in toxicity mechanism using in vitro cytotoxicity assays in quantitative high throughput screening. Chem Res Toxicol. 2008;21(3):659–67. https://doi.org/10.1021/tx700365e

18. Huang R, Xia M, Cho M-H, Sakamuru S, Shinn P, Houck KA, et al. Chemical genomics profiling of environmental chemical modulation of human nuclear receptors. Environ Health Perspect. 2011;119(8):1142–8. https://doi.org/10.1289/ehp.1002952

19. Andersen ME, McMullen PD, Krewski D. Developing tools for defining and establishing pathways of toxicity. Arch Toxicol. 2015;89(5):809–12. https://doi.org/10.1007/s00204-015-1512-y

20. Zhao J, Xia M. Cell-based hERG channel inhibition assay in high-throughput format. Methods Mol Biol. 2022;2474:21–8. https://doi.org/10.1007/978-1-0716-2213-1_3

21. Lee H-M, Yu M-S, Kazmi SR, Oh SY, Rhee K-H, Bae M-A, et al. Computational determination of hERG-related cardiotoxicity of drug candidates. BMC Bioinformatics. 2019;20(Suppl 10):250. https://doi.org/10.1186/s12859-019-2814-5

22. Farzam K, Tivakaran VS. QT Prolonging Drugs. Treasure Island (FL): StatPearls Publishing; 2023. PMID: 30521285.

23. Nachimuthu S, Assar MD, Schussler JM. Drug-induced QT interval prolongation: mechanisms and clinical management. Ther Adv Drug Saf. 2012;3(5):241–53. https://doi.org/10.1177/2042098612454283

24. Mulla W, Murninkas M, Levi O, Etzion Y. Incorrectly corrected? QT interval analysis in rats and mice. Front Physiol. 2022;13:1002203. https://doi.org/10.3389/fphys.2022.1002203

25. Joukar S. A comparative review on heart ion channels, action potentials and electrocardiogram in rodents and human: extrapolation of experimental insights to clinic. Lab Anim Res. 2021;37(1):25. https://doi.org/10.1186/s42826-021-00102-3

26. Olasińska-Wiśniewska A, Olasiński J, Grajek S. Cardiovascular safety of antihistamines. Postepy Dermatol Alergol. 2014;31(3):182–6. https://doi.org/10.5114/pdia.2014.43191

27. Lazzara R. Antiarrhythmic drugs and torsade de pointes. Eur Heart J. 1993;14:88–92. https://doi.org/10.1093/eurheartj/14.suppl_H.88

28. Chohan PS, Mittal R, Javed A. Antipsychotic medication and QT prolongation. Pak J Med Sci. 2015;31(5):1269–71. https://doi.org/10.12669/pjms.315.8998

29. Traebert M, Dumotier B. Antimalarial drugs: QT prolongation and cardiac arrhythmias. Expert Opin Drug Saf. 2005;4(3):421–31. https://doi.org/10.1517/14740338.4.3.421

30. Mason JW. Antimicrobials and QT prolongation. J Antimicrob Chemother. 2017;72(5):1272–4. https://doi.org/10.1093/jac/dkw591

31. Keller GA, Di Girolamo G. Prokinetic agents and QT prolongation: a familiar scene with new actors. Curr Drug Saf. 2010;5(1):73–8. https://doi.org/10.2174/157488610789869166

32. Onakpoya IJ, Heneghan CJ, Aronson JK. Post-marketing withdrawal of 462 medicinal products because of adverse drug reactions: a systematic review of the world literature. BMC Med. 2016;14:10. https://doi.org/10.1186/s12916-016-0553-2

33. Roy M, Dumaine R, Brown AM. HERG, a primary human ventricular target of the nonsedating antihistamine terfenadine. Circulation. 1996;94(4):817–23. https://doi.org/10.1161/01.cir.94.4.817

34. Wang Z, Mussa HY, Lowe R, Glen RC, Yan A. Probability based hERG blocker classifiers. Mol Inform. 2012;31(9):679–85. https://doi.org/10.1002/minf.201200011

35. Garrido A, Lepailleur A, Mignani SM, Dallemagne P, Rochais C. hERG toxicity assessment: useful guidelines for drug design. Eur J Med Chem. 2020;195:112290. https://doi.org/10.1016/j.ejmech.2020.112290

36. Attene-Ramos MS, Huang R, Michael S, Witt KL, Richard A, Tice RR, et al. Profiling of the Tox21 chemical collection for mitochondrial function to identify compounds that acutely decrease mitochondrial membrane potential. Environ Health Perspect. 2015;123(1):49–56. https://doi.org/10.1289/ehp.1408642

37. Brodaczewska KK, Szczylik C, Fiedorowicz M, Porta C, Czarnecka AM. Choosing the right cell line for renal cell cancer research. Mol Cancer. 2016;15(1):83. https://doi.org/10.1186/s12943-016-0565-8

38. Guo L, Dial S, Shi L, Branham W, Liu J, Fang JL, et al. Similarities and differences in the expression of drug-metabolizing enzymes between human hepatic cell lines and primary human hepatocytes. Drug Metab Dispos. 2011;39(3):528–38. https://doi.org/10.1124/dmd.110.035873

39. Lübberstedt M, Müller-Vieira U, Mayer M, Biemel KM, Knöspel F, Knobeloch D, et al. HepaRG human hepatic cell line utility as a surrogate for primary human hepatocytes in drug metabolism assessment in vitro. J Pharmacol Toxicol Methods. 2011;63(1):59–68. https://doi.org/10.1016/j.vascn.2010.04.013

40. Gómez-Lechón MJ, Tolosa L, Conde I, Donato MT. Competency of different cell models to predict human hepatotoxic drugs. Expert Opin Drug Metab Toxicol. 2014;10(11):1553–68. https://doi.org/10.1517/17425255.2014.967680

41. Elaut G, Henkens T, Papeleu P, Snykers S, Vinken M, Vanhaecke T, Rogiers V. Molecular mechanisms underlying the dedifferentiation process of isolated hepatocytes and their cultures. Curr Drug Metab. 2006;7(6):629–60. https://doi.org/10.2174/138920006778017759

42. Schwartz RE, Fleming HE, Khetani SR, Bhatia SN. Pluripotent stem cell-derived hepatocyte-like cells. Biotechnol Adv. 2014;32(2):504–13. https://doi.org/10.1016/j.biotechadv.2014.01.003

43. Baxter M, Withey S, Harrison S, Segeritz CP, Zhang F, Atkinson-Dell R, et al. Phenotypic and functional analyses show stem cell-derived hepatocyte-like cells better mimic fetal rather than adult hepatocytes. J Hepatol. 2015;62(3):581–9. https://doi.org/10.1016/j.jhep.2014.10.016

44. Trefts E, Gannon M, Wasserman DH. The liver. Curr Biol. 2017;27(21):R1147–51. https://doi.org/10.1016/j.cub.2017.09.019

45. Esch EW, Bahinski A, Huh D. Organs-on-chips at the frontiers of drug discovery. Nat Rev Drug Discov. 2015;14(4):248–60. https://doi.org/10.1038/nrd4539

46. Cho S, Yoon J-Y. Organ-on-a-chip for assessing environmental toxicants. Curr Opin Biotechnol. 2017;45:34–42. https://doi.org/10.1016/j.copbio.2016.11.019

47. Wu Q, Liu J, Wang X, Feng L, Wu J, Zhu X, et al. Organ-on-a-chip: recent breakthroughs and future prospects. Biomed Eng Online. 2020;19(1):9. https://doi.org/10.1186/s12938-020-0752-0

48. Cong Y, Han X, Wang Y, Chen Z, Lu Y, Liu T, et al. Drug toxicity evaluation based on organ-on-a-chip technology: a review. Micromachines (Basel). 2020;11(4):381. https://doi.org/10.3390/mi11040381

49. Jang KJ, Otieno MA, Ronxhi J, Lim HK, Ewart L, Kodella KR, et al. Reproducing human and cross-species drug toxicities using a Liver-Chip. Sci Transl Med. 2019;11(517):eaax5516. https://doi.org/10.1126/scitranslmed.aax5516

50. Tavares RSN, Tao TP, Maschmeyer I, Maria-Engler SS, Schäfer-Korting M, Winter A, et al. Toxicity of topically applied drugs beyond skin irritation: static skin model vs. two organs-on-a-chip. Int J Pharm. 2020;589:119788. https://doi.org/10.1016/j.ijpharm.2020.119788

51. Vriend J, Vormann MK, Lanz HL, Joore J, Trietsch SJ, Russel FGM, et al. Nephroscreen: a robust and versatile renal tubule-on-a-chip platform for nephrotoxicity assessment. Curr Opin Toxicol. 2021;25:42–8. https://doi.org/10.1016/j.cotox.2021.03.001

52. Vormann MK, Vriend J, Lanz HL, Gijzen L, van den Heuvel A, Hutter S, et al. Implementation of a human renal proximal tubule on a chip for nephrotoxicity and drug interaction studies. J Pharm Sci. 2021;110(4):1601–14. https://doi.org/10.1016/j.xphs.2021.01.028

53. Richter W, Xie M, Scheitrum C, Krall J, Movsesian MA, Conti M. Conserved expression and functions of PDE4 in rodent and human heart. Comparative Study Basic Res Cardiol. 2011;106(2):249–62. https://doi.org/10.1007/s00395-010-0138-8

54. Walweel K, Li J, Molenaar P, Imtiaz MS, Quail A, dos Remedios CG, et al. Differences in the regulation of RyR2 from human, sheep, and rat by Ca² + and Mg² + in the cytoplasm and in the lumen of the sarcoplasmic reticulum. J Gen Physiol. 2014;144(3):263–71. https://doi.org/10.1085/jgp.201311157

55. Jasnic-Savovic J, Nestorovic A, Savic S, Karasek S, Vitulo N, Valle G, et al. Profiling of skeletal muscle Ankrd2 protein in human cardiac tissue and neonatal rat cardiomyocytes. Histochem Cell Biol. 2015;143(6):583–97. https://doi.org/10.1007/s00418-015-1307-5

56. Kujala VJ, Pasqualini FS, Goss JA, Nawroth JC, Parker KK. Laminar ventricular myocardium on a microelectrode array-based chip. J Mater Chem B. 2016;4(20):3534–43. https://doi.org/10.1039/C6TB00324A

57. Zhang YS, Arneri A, Bersini S, Shin SR, Zhu K, Goli-Malekabadi Z, et al. Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Biomaterials. 2016;110:45–59. https://doi.org/10.1016/j.biomaterials.2016.09.003

58. Park TE, Mustafaoglu N, Herland A, Hasselkus R, Mannix R, FitzGerald EA, et al. Hypoxia-enhanced blood–brain barrier chip recapitulates human barrier function and shuttling of drugs and antibodies. Nat Commun. 2019;10(1):2621. https://doi.org/10.1038/s41467-019-10588-0

59. Vatine GD, Barrile R, Workman MJ, Sances S, Barriga BK, Rahnama M, et al. Human iPSC-derived blood–brain barrier chips enable disease modeling and personalized medicine applications. Cell Stem Cell. 2019;24(6):995–1005.e6. https://doi.org/10.1016/j.stem.2019.05.011

60. Pediaditakis I, Kodella KR, Manatakis DV, Le CY, Hinojosa CD, Tien-Street W, et al. Modeling α-synuclein pathology in a human brain-chip to assess blood–brain barrier disruption. Nat Commun. 2021;12:5907. https://doi.org/10.1038/s41467-021-26066-5

61. Jang KJ, Mehr AP, Hamilton GA, McPartlin LA, Chung S, Suh KY, Ingber DE. Human kidney proximal tubule-on-a-chip for drug transport and nephrotoxicity assessment. Integr Biol (Camb). 2013;5(9):1119–29. https://doi.org/10.1039/c3ib40049b

62. Dai M, Xiao G, Shao M, Zhang YS. The synergy between deep learning and organs-on-chips for high-throughput drug screening: a review. Biosensors (Basel). 2023;13(3):389. https://doi.org/10.3390/bios13030389

63. Xavier J, Venugopal A, Ashok A, Mohanan PV. 23 — Organ-on-a-chip for toxicity evaluation. In: Mohanan PV, ed. Biomedical product and materials evaluation. Standards and ethics. Elsevier; 2022. P. 611–33. https://doi.org/10.1016/B978-0-12-823966-7.00017-7

64. Ingber DE. Human organs-on-chips for disease modelling, drug development and personalized medicine. Nat Rev Genet. 2022;23(8):467–91. https://doi.org/10.1038/s41576-022-00466-9

65. Chang SY, Weber EJ, Sidorenko VS, Chapron A, Yeung CK, Gao C, et al. Human liver-kidney model elucidates the mechanisms of aristolochic acid nephrotoxicity. JCI Insight. 2017;2(22):e95978. https://doi.org/10.1172/jci.insight.95978

66. Bovard D, Sandoz A, Luettich K, Frentzel S, Iskandar A, Marescotti D, et al. A lung/liver-on-a-chip platform for acute and chronic toxicity studies. Lab Chip. 2018;18(24):3814–29. https://doi.org/10.1039/c8lc01029c

67. Ferrari E, Rasponia M. Liver–heart on chip models for drug safety. APL Bioeng. 2021;5(3):031505. https://doi.org/10.1063/5.0048986

68. Piergiovanni M, Leite SB, Corvi R, Whelan M. Standardisation needs for organ on chip devices. Lab Chip. 2021;21(15):2857–68. https://doi.org/10.1039/d1lc00241d

69. Bartfeld S, Clevers H. Stem cell-derived organoids and their application for medical research and patient treatment. J Mol Med (Berl). 2017;95(7):729–38. https://doi.org/10.1007/s00109-017-1531-7

70. Fatehullah A, Tan SH, Barker N. Organoids as an in vitro model of human development and disease. Nat Cell Biol. 2016;18(3):246–54. https://doi.org/10.1038/ncb3312

71. Kim J, Koo BK, Knoblich JA. Human organoids: model systems for human biology and medicine. Nat Rev Mol Cell Biol. 2020;21(10):571–84. https://doi.org/10.1038/s41580-020-0259-3

72. Shinozawa T, Kimura M, Cai Y, Saiki N, Yoneyama Y, Ouchi R, et al. High-fidelity drug-induced liver injury screen using human pluripotent stem cell-derived organoids. Gastroenterology. 2021;160(3):831–46. e10. https://doi.org/10.1053/j.gastro.2020.10.002

73. Matsui T, Shinozawa T. Human organoids for predictive toxicology research and drug development. Front Genet. 2021;12:767621. https://doi.org/10.3389/fgene.2021.767621

74. Ooka M, Zhao J, Shah P, Travers J, Klumpp-Thomas C, Xu X, et al. Identification of environmental chemicals that activate p53 signaling after in vitro metabolic activation. Arch Toxicol. 2022;96(7):1975–87. https://doi.org/10.1007/s00204-022-03291-5

75. Merrick BA, Paules RS, Tice RR. Intersection of toxicogenomics and high throughput screening in the Tox21 program: an NIEHS perspective. Int J Biotechnol. 2015;14(1):7–27. https://doi.org/10.1504/IJBT.2015.074797

76. Liu Z, Huang R, Roberts R, Tong W. Toxicogenomics — a 2020 vision. Trends Pharmacol Sci. 2019;40(2):92–103. https://doi.org/10.1016/j.tips.2018.12.001

77. MAQC Consortium; Shi L, Reid LH, Jones WD, Shippy R, Warrington JA, et al. The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. Nat Biotechnol. 2006;24(9):1151–61. https://doi.org/10.1038/nbt1239

78. Grimm D. U.S. EPA to eliminate all mammal testing by 2035. Science. 10.09.2019. https://doi.org/10.1126/science.aaz4593

79. Escher B, Neale P, Leusch F. Chapter 9: In vitro assays for the risk assessment of chemicals. In: Escher B, Neale P, Leusch F. Bioanalytical tools in water quality assessment. IWA Publishing; 2021. P. 143–68.

80. Spielmann H, Kandarova H. Integration of advanced technologies into regulatory toxicology. In: Reichl FX, Schwenk M, eds. Regulatory Toxicology. Springer; 2021. P. 149–61. https://doi.org/10.1007/978-3-642-36206-4_34-2

81. Karmaus AL, Bialk H, Fitzpatrick S, Krishan M. State of the science on alternatives to animal testing and integration of testing strategies for food safety assessments: workshop proceedings. Regul Toxicol Pharmacol. 2020;110:104515. https://doi.org/10.1016/j.yrtph.2019.104515

82. Kleinstreuer NC, Karmaus A, Mansouri K, Allen DG, Fitzpatrick JM, Patlewicz G. Predictive models for acute oral systemic toxicity: a workshop to bridge the gap from research to regulation. Comput Toxicol. 2018;8(11):21–4. https://doi.org/10.1016/j.comtox.2018.08.002


Дополнительные файлы

Рецензия

Для цитирования:


Перфилова В.Н. Возможности и перспективы доклинической оценки лекарственной безопасности с использованием альтернативных методов: опыт реализации программы «Токсикология в XXI веке» в США. Безопасность и риск фармакотерапии. 2023;. https://doi.org/10.30895/2312-7821-2023-379

For citation:


Perfilova V.N. Opportunities and Prospects for Preclinical Drug Safety Assessment Using Alternative Methods: Experience from the Toxicology in the 21st Century (Tox21) Programme in the USA. Safety and Risk of Pharmacotherapy. 2023;. https://doi.org/10.30895/2312-7821-2023-379

Просмотров: 190


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2312-7821 (Print)
ISSN 2619-1164 (Online)