Statin-Induced Myopathy
https://doi.org/10.30895/2312-7821-2023-11-3-252-270
Abstract
Scientific relevance. Being the main class of medicinal products for dyslipidaemia treatment, statins are widely used in clinical practice in various patient populations. However, statins can cause statin-associated muscle symptoms (SAMS), which are the most frequent and, in some cases, even life-threatening adverse reactions associated with these medicinal products.
Aim. The study aimed to perform a systematic review of the epidemiology, classification, and physiological pathogenesis of SAMS, risk factors for this complication, and clinical guidelines for primary care physicians regarding the identification and treatment of patients with SAMS.
Discussion. SAMS is an umbrella term that covers various forms of myopathies associated with satin therapy. According to the published literature, the prevalence of SAMS varies considerably and may depend on the study design, inclusion criteria, and the medicinal product used. SAMS has multiple putative pathogenic pathways that include genetically determined processes, abnormalities in mitochondrial function, defects in intracellular signalling and metabolic pathways, and immune-mediated reactions. The main known risk factors for developing SAMS include high-dose statins, drug–drug interactions, genetic polymorphisms, female sex, older age, Asian race, history of kidney, liver, and muscle disease, and strenuous physical activity. Given the lack of universally recognised algorithms for diagnosing SAMS, clinicians should consider the clinical presentation and the temporal relationship between statin therapy and symptoms. Other factors to consider include changes in muscle-specific enzyme levels and, in some cases, the results of blood tests for antibodies to 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase.
Conclusions. To ensure the safety of statin therapy, it is essential to raise clinicians’ awareness of the risk factors for SAMS, indicative clinical and laboratory findings, and the need for dynamic patient monitoring, including the involvement of clinical pharmacologists.
Keywords
About the Authors
D. A. SychevRussian Federation
Dmitry A. Sychev - Academician of the Russian Academy of Sciences, Dr. Sci. (Med.), Professor.
2/1/1 Barrikadnaya St., Moscow 1125993
T. M. Ostroumova
Russian Federation
Tatiana M. Ostroumova - Cand. Sci. (Med.).
8/2 Trubetskaya St., Moscow 119991
O. D. Ostroumova
Russian Federation
Olga D. Ostroumova - Dr. Sci. (Med.), Professor.
2/1/1 Barrikadnaya St., Moscow 1125993; 8/2 Trubetskaya St., Moscow 119991
A. I. Kochetkov
Russian Federation
Aleksey I. Kochetkov - Cand. Sci. (Med.), Associate Professor.
2/1/1 Barrikadnaya St., Moscow 1125993
S. V. Batyukina
Russian Federation
Svetlana V. Batyukina
2/1/1 Barrikadnaya St., Moscow 1125993
E. V. Mironova
Russian Federation
Elena V. Mironova - Cand. Sci. (Med.).
84 Volokolamsk Hwy, Moscow 125367
References
1. Pasternak RC, Smith SC Jr, Bairey-Merz CN, Grundy SM, Cleeman JI, Lenfant C, et al. ACC/AHA/NHLBI clinical advisory on the use and safety of statins. J Am Coll Cardiol. 2002;40(3):567–72. https://doi.org/10.1016/s0735-1097(02)02030-2
2. Tisdale JE, Miller DA. Drug induced diseases: prevention, detection, and management. 3rd ed. Bethesda, Md.: American Society of Health-System Pharmacists; 2018.
3. Jain КК. Drug-induced neurological disorders. 4th ed. Springer; 2021. https://doi.org/10.1007/978-3-030-73503-6
4. Gupta A, Gupta Y. Glucocorticoid-induced myopathy: pathophysiology, diagnosis, and treatment. Indian J Endocrinol Metab. 2013;17(5):913–6. https://doi.org/10.4103/2230-8210.117215
5. Thompson PD, Clarkson P, Karas RH. Statin-associated myopathy. JAMA. 2003;289(13):1681–90. https://doi.org/10.1001/jama.289.13.1681
6. Fernandez G, Spatz ES, Jablecki C, Phillips PS. Statin myopathy: a common dilemma not reflected in clinical trials. Cleve Clin J Med. 2011;78(6):393–403. https://doi.org/10.3949/ccjm.78a.10073
7. Napalkov DA. The safety of statins: what a physician needs to know. Rational Pharmacotherapy in Cardiology. 2014;10(3):334–8 (In Russ.). https://doi.org/10.20996/1819-6446-2014-10-3-334-338
8. Guyton JR, Bays HE, Grundy SM, Jacobson TA, The National Lipid Association Statin Intolerance Panel. An assessment by the Statin Intolerance Panel: 2014 update. J Clin Lipidol. 2014;8(3 Suppl):S72–81. https://doi.org/10.1016/j.jacl.2014.03.002
9. Dyadyk AI, Kugler TE, Zborowskyy SR, Suliman YuV. Statin-associated muscle symptoms: epidemiology, risk factors, mechanisms and treatment. Kardiologiia. 2019;59(5S):4–12 (In Russ.). https://doi.org/10.18087/cardio.2522
10. Ballantyne CM, Corsini A, Davidson MH, Holdaas H, Jacobson TA, Leitersdorf E, et al. Risk for myopathy with statin therapy in high-risk patients. Arch Intern Med. 2003;163(5):553–64. https://doi.org/10.1001/archinte.163.5.553
11. Furberg CD, Pitt B. Withdrawal of cerivastatin from the world market. Curr Control Trials Cardiovasc Med. 2001;2(5):205–7. https://doi.org/10.1186/cvm-2-5-205
12. Kashani A, Phillips CO, Foody JM, Wang Y, Mangalmurti S, Ko DT, Krumholz HM. Risks associated with statin therapy: a systematic overview of randomized clinical trials. Circulation. 2006;114(25):2788–97. https://doi.org/10.1161/CIRCULATIONAHA.106.624890
13. Stroes ES, Thompson PD, Corsini A, Vladutiu GD, Raal FJ, Ray KK, et al. Statin-associated muscle symptoms: impact on statin therapy-European Atherosclerosis Society Consensus Panel Statement on Assessment, Aetiology and Management. Eur Heart J. 2015;36(17):1012–22. https://doi.org/10.1093/eurheartj/ehv043
14. Janssen L, Allard NAE, Saris CGJ, Keijer J, Hopman MTE, Timmers S. Muscle toxicity of drugs: when drugs turn physiology into pathophysiology. Physiol Rev. 2020;100(2):633–72. https://doi.org/10.1152/physrev.00002.2019
15. Hansen KE, Hildebrand JP, Ferguson EE, Stein JH. Outcomes in 45 patients with statin-associated myopathy. Arch Intern Med. 2005;165(22):2671–6. https://doi.org/10.1001/archinte.165.22.2671
16. Sumarokov AB. Autoimmune necrotizing statin-induced myopathy. Journal of Atherosclerosis and Dyslipidemias. 2022;2(47):5–9 (In Russ.). https://doi.org/10.34687/2219-8202.JAD.2022.02.0001
17. Collins R, Reith C, Emberson J, Armitage J, Baigent C, Blackwell L, et al. Interpretation of the evidence for the efficacy and safety of statin therapy. Lancet. 2016;388(10059): 2532–61. https://doi.org/10.1016/S0140-6736(16)31357-5
18. Mammen AL, Chung T, Christopher-Stine L, Rosen P, Rosen A, Doering KR, et al. Autoantibodies against 3-hydroxy-3-methylglutaryl-coenzyme A reductase in patients with statin-associated autoimmune myopathy. Arthritis Rheum. 2011;63(3):713–21. https://doi.org/10.1002/art.30156
19. Mohassel P, Mammen AL. Anti-HMGCR myopathy. J Neuromuscul Dis. 2018;5(1):11–20. https://doi.org/10.3233/JND-170282
20. Pinal-Fernandez I, Casal-Dominguez M, Mammen AL. Immune-mediated necrotizing myopathy. Curr Rheumatol Rep. 2018;20(4):21. https://doi.org/10.1007/s11926-018-0732-6
21. Staffa JA, Chang J, Green L. Cerivastatin and reports of fatal rhabdomyolysis. N Engl J Med. 2002;346(7):539–40. https://doi.org/10.1056/NEJM200202143460721
22. Cziraky MJ, Willey VJ, McKenney JM, Kamat SA, Fisher MD, Guyton JR, et al. Risk of hospitalized rhabdomyolysis associated with lipid-lowering drugs in a real-world clinical setting. J Clin Lipidol. 2013;7(2):102–8. https://doi.org/10.1016/j.jacl.2012.06.006
23. Cziraky MJ, Willey VJ, McKenney JM, Kamat SA, Fisher MD, Guyton JR, et al. Statin safety: an assessment using an administrative claims database. Am J Cardiol. 2006;97(8A):61C–68C. https://doi.org/10.1016/j.amjcard.2005.12.011
24. Mohassel P, Mammen AL. Statin-associated autoimmune myopathy and anti-HMGCR autoantibodies. Muscle Nerve. 2013;48(4):477–83. https://doi.org/10.1002/mus.23854
25. Taylor BA, Thompson PD. Muscle-related side-effects of statins: from mechanisms to evidence-based solutions. Curr Opin Lipidol. 2015;26(3):221–7. https://doi.org/10.1097/MOL.0000000000000174
26. Finegold JA, Manisty CH, Goldacre B, Barron AJ, Francis DP. What proportion of symptomatic side effects in patients taking statins are genuinely caused by the drug? Systematic review of randomized placebo-controlled trials to aid individual patient choice. Eur J Prev Cardiol. 2014;21(4):464–74. https://doi.org/10.1177/2047487314525531
27. Ganga HV, Slim HB, Thompson PD. A systematic review of statin-induced muscle problems in clinical trials. Am Heart J. 2014;168(1):6–15. https://doi.org/10.1016/j.ahj.2014.03.019
28. Gupta A, Thompson D, Whitehouse A, Collier T, Dahlof B, Poulter N, et al. Adverse events associated with unblinded, but not with blinded, statin therapy in the Anglo-Scandinavian Cardiac Outcomes Trial-Lipid-Lowering Arm (ASCOT-LLA): a randomised double-blind placebo-controlled trial and its non-randomised non-blind extension phase. Lancet. 2017;389(10088):2473–81. https://doi.org/10.1016/S0140-6736(17)31075-9
29. Liao JK. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. Curr Atheroscler Rep. 2009;11(4):243–4. https://doi.org/10.1007/s11883-009-0037-3
30. MRC/BHF Heart Protection Study Collaborative Group; Armitage J, Bowman L, Collins R, Parish S, Tobert J. Effects of simvastatin 40 mg daily on muscle and liver adverse effects in a 5-year randomized placebo-controlled trial in 20,536 high-risk people. BMC Clin Pharmacol. 2009;9:6. https://doi.org/10.1186/1472-6904-9-6
31. Keech A, Collins R, MacMahon S, Armitage J, Lawson A, Wallendszus K, et al. Three-year follow-up of the Oxford Cholesterol Study: assessment of the efficacy and safety of simvastatin in preparation for a large mortality study. Eur Heart J. 1994;15(2):255–69. https://doi.org/10.1093/oxfordjournals.eurheartj.a060485
32. Cai T, Abel L, Langford O, Monaghan G, Aronson JK, Stevens RJ, et al. Associations between statins and adverse events in primary prevention of cardiovascular disease: systematic review with pairwise, network, and dose-response meta-analyses. BMJ. 2021;374:n1537. https://doi.org/10.1136/bmj.n1537
33. Parker BA, Capizzi JA, Grimaldi AS, Clarkson PM, Cole SM, Keadle J, et al. Effect of statins on skeletal muscle function. Circulation. 2013;127(1):96–103. https://doi.org/10.1161/CIRCULATIONAHA.112.136101
34. Bruckert E, Hayem G, Dejager S, Yau C, Bégaud B. Mild to moderate muscular symptoms with high-dosage statin therapy in hyperlipidemic patients — the PRIMO study. Cardiovasc Drugs Ther. 2005;19(6):403–14. https://doi.org/10.1007/s10557-005-5686-z
35. Study of the Effectiveness of Additional Reductions in Cholesterol and Homocysteine (SEARCH) Collaborative Group; Armitage J, Bowman L, Wallendszus K, Bulbulia R, Rahimi K, et al. Intensive lowering of LDL cholesterol with 80 mg versus 20 mg simvastatin daily in 12,064 survivors of myocardial infarction: a double-blind randomised trial. Lancet. 2010;376(9753):1658–69. https://doi.org/10.1016/S0140-6736(10)60310-8
36. Naci H, Brugts J, Ades T. Comparative tolerability and harms of individual statins: a study-level network meta-analysis of 246 955 participants from 135 randomized, controlled trials. Circ Cardiovasc Qual Outcomes. 2013;6(4):390–9. https://doi.org/10.1161/CIRCOUTCOMES.111.000071
37. Yebyo HG, Aschmann HE, Kaufmann M, Puhan MA. Comparative effectiveness and safety of statins as a class and of specific statins for primary prevention of cardiovascular disease: A systematic review, meta-analysis, and network meta-analysis of randomized trials with 94,283 participants. Am Heart J. 2019;210:18–28. https://doi.org/10.1016/j.ahj.2018.12.007
38. Mach F, Ray KK, Wiklund O, Corsini A, Catapano AL, Bruckert E, et al. Adverse effects of statin therapy: perception vs. the evidence — focus on glucose homeostasis, cognitive, renal and hepatic function, haemorrhagic stroke and cataract. Eur Heart J. 2018;39(27):2526–39. https://doi.org/10.1093/eurheartj/ehy182
39. Nielsen SF, Nordestgaard BG. Negative statin-related news stories decrease statin persistence and increase myocardial infarction and cardiovascular mortality: a nationwide prospective cohort study. Eur Heart J. 2016;37(11):908–16. https://doi.org/10.1093/eurheartj/ehv641
40. Serban MC, Colantonio LD, Manthripragada AD, Monda KL, Bittner VA, Banach M, et al. Statin intolerance and risk of coronary heart events and all-cause mortality following myocardial infarction. J Am Coll Cardiol. 2017;69(11):1386–95. https://doi.org/10.1016/j.jacc.2016.12.036
41. Matthews A, Herrett E, Gasparrini А, Van Staa Т, Goldacre В, Smeeth L, et al. Impact of statin related media coverage on use of statins: interrupted time series analysis with UK primary care data. BMJ. 2016;353:i3283. https://doi.org/10.1136/bmj.i3283
42. Tobert JA, Newman CB. The nocebo effect in the context of statin intolerance. J Clin Lipidol. 2016;10(4):739–47. https://doi.org/10.1016/j.jacl.2016.05.002
43. Vinci P, Panizon E, Tosoni LM, Cerrato C, Pellicori F, Mearelli F, et al. Statin-associated myopathy: emphasis on mechanisms and targeted therapy. Int J Mol Sci. 2021;22(21):11687. https://doi.org/10.3390/ijms222111687
44. Arouche-Delaperche L, Allenbach Y, Amelin D, Preusse C, Mouly V, Mauhin W. Pathogenic role of anti-signal recognition protein and anti-3-hydroxy-3-methylglutaryl-coa reductase anti-bodies in necrotizing myopathies: Myofiber atrophy and impairment of muscle regeneration in necrotizing autoimmune myopathies. Ann Neurol. 2017;81(4):538–48. https://doi.org/10.1002/ana.24902
45. Kaufmann P, Török M, Zahno A, Waldhauser KM, Brecht K, Krähenbühl S. Toxicity of statins on rat skeletal muscle mitochondria. Cell Mol Life Sci. 2006;63(19–20):2415–25. https://doi.org/10.1007/s00018-006-6235-z
46. Wiel C, Lallet-Daher H, Gitenay D, Gras B, Le Calvé B, Augert A, et al. Endoplasmic reticulum calcium release through ITPR2 channels leads to mitochondrial calcium accumulation and senescence. Nat Commun. 2014;5:3792. https://doi.org/10.1038/ncomms4792
47. Ghatak A, Faheem O, Thompson PD. The genetics of statin-induced myopathy. Atherosclerosis. 2010;210(2):337–43. https://doi.org/10.1016/j.atherosclerosis.2009.11.033
48. Marez D, Legrand M, Sabbagh N, Lo Guidice JM, Spire C, Lafitte JJ, et al. Polymorphism of the cytochrome P450 CYP2D6 gene in a European population: characterization of 48 mutations and 53 alleles, their frequencies and evolution. Pharmacogenetics. 1997;7(3):193–202. https://doi.org/10.1097/00008571-199706000-00004
49. Johansson I, Lundqvist E, Bertilsson L, Dahl ML, Sjöqvist F, Ingelman-Sundberg M. Inherited amplification of an active gene in the cytochrome P450 CYP2D locus as a cause of ultrarapid metabolism of debrisoquine. Proc Natl Acad Sci USA. 1993;90(24):11825–9. https://doi.org/10.1073/pnas.90.24.11825
50. Gluba-Brzozka A, Franczyk B, Toth PP, Rysz J, Banach M. Molecular mechanisms of statin intolerance. Arch Med Sci. 2016;12(3):645–58. https://doi.org/10.5114/aoms.2016.59938
51. Wilke RA, Moore JH, Burmester JK. Relative impact of CYP3A genotype and concomitant medication on the severity of atorvastatin-induced muscle damage. Pharmacogenet Genomics. 2005;15(6):415–21. https://doi.org/10.1097/01213011-200506000-00007
52. Dobkin BH. Underappreciated statin-induced myopathic weakness causes disability. Neurorehabil Neural Repair. 2005;19(3):259–63. https://doi.org/10.1177/1545968305277167
53. Reiner Z. Resistance and intolerance to statins. Nutr Metab Cardiovasc Dis. 2014;24(10):1057–66. https://doi.org/10.1016/j.numecd.2014.05.009
54. Sirtori CR, Mombelli G, Triolo M, Laaksonen R. Clinical response to statins: mechanism(s) of variable activity and adverse effects. Ann Med. 2012;44(5):419–32. https://doi.org/10.3109/07853890.2011.582135
55. Duman I. Role of pharmacogenetics on response to statins: A genotype-based approach to statin therapy outcome. J Cardiol Therapy. 2014;1(6):111–20.
56. Bieber LL. Carnitine. Annu Rev Biochem. 1988;57:261–83. https://doi.org/10.1146/annurev.bi.57.070188.001401
57. Sigauke E, Rakheja D, Kitson K, Bennett MJ. Carnitine palmitoyltransferase II deficiency: a clinical, biochemical, and molecular review. Lab Invest. 2003;83(11):1543–54. https://doi.org/10.1097/01.lab.0000098428.51765.83
58. Flint OP, Masters BA, Gregg RE, Durham SK. Inhibition of cholesterol synthesis by squalene synthase inhibitors does not induce myotoxicity in vitro. Toxicol Appl Pharmacol. 1997;145(1):91–8. https://doi.org/10.1006/taap.1997.8131
59. Vladutiu GD, Simmons Z, Isackson PJ, Tarnopolsky M, Peltier WL, Barboi AC, et al. Genetic risk factors associated with lipid-lowering drug-induced myopathies. Muscle Nerve. 2006;34(2):153–62. https://doi.org/10.1002/mus.20567
60. Tay SK, Dimauro S, Pang AY, Lai PS, Yap HK. Myotoxicity of lipid-lowering agents in a teenager with MELAS mutation. Pediatr Neurol. 2008;39(6):426–8. https://doi.org/10.1016/j.pediatrneurol.2008.09.002
61. Tsivgoulis G, Spengos K, Karandreas N, Panas M, Kla di A, Manta P. Presymptomatic neuromuscular disorders disclosed following statin treatment. Arch Intern Med. 2006;166(14):1519–24. https://doi.org/10.1001/archinte.166.14.1519
62. Chariot P, Abadia R, Agnus D, Danan C, Charpentier C, Gherardi RK. Simvastatin-induced rhabdomyolysis followed by a MELAS syndrome. Am J Med. 1993;94(1):109–10. https://doi.org/10.1016/0002-9343(93)90129-d
63. Hur J, Liu Z, Tong W, Laaksonen R, Bai JP. Drug-induced rhabdomyolysis: from systems pharmacology analysis to biochemical flux. Chem Res Toxicol. 2014;27(3):421–32. https://doi.org/10.1021/tx400409c
64. Skottheim IB, Gedde-Dahl A, Hejazifar S, Hoel K, Asberg A. Statin induced myotoxicity: the lactone forms are more potent than the acid forms in human skeletal muscle cells in vitro. Eur J Pharm Sci. 2008;33(4–5):317–25. https://doi.org/10.1016/j.ejps.2007.12.009
65. Schirris TJ, Ritschel T, Bilos A, Smeitink JA, Russel FG. Statin lactonization by uridine 5’-diphospho-glucuronosyltransferases (UGTs). Mol Pharm. 2015;12(11):4048–55. https://doi.org/10.1021/acs.molpharmaceut.5b00474
66. Wagner BK, Gilbert TJ, Hanai J, Imamura S, Bodycombe NE, Bon RS, et al. A small-molecule screening strategy to identify suppressors of statin myopathy. ACS Chem Biol. 2011;6(9):900–4. https://doi.org/10.1021/cb200206w
67. Wagner BK, Kitami T, Gilbert TJ, Peck D, Ramanathan A, Schreiber SL, et al. Large-scale chemical dissection of mitochondrial function. Nat Biotechnol. 2008;26(3):343–51. https://doi.org/10.1038/nbt1387
68. Kavalipati N, Shah J, Ramakrishan A, Vasnawala H. Pleiotropic effects of statins. Indian J Endocrinol Metab. 2015;19(5):554–62. https://doi.org/10.4103/2230-8210.163106
69. Phillips PS, Haas RH, Bannykh S, Hathaway S, Gray NL, Kimura BJ, et al. Statin-associated myopathy with normal creatine kinase levels. Ann Intern Med. 2002;137(7):581–5. https://doi.org/10.7326/0003-4819-137-7-200210010-00009
70. Guijarro C, Blanco-Colio LM, Ortego M, Alonso C, Ortiz A, Plaza JJ, et al. 3-Hydroxy-3-methylglutaryl coenzyme a reductase and isoprenylation inhibitors induce apoptosis of vascular smooth muscle cells in culture. Circ Res. 1998;83(5):490–500. https://doi.org/10.1161/01.res.83.5.490
71. Hernández-Camacho JD, Bernier M, López-Lluch G, Navas P. Coenzyme Q10 supplementation in aging and disease. Front Physiol. 2018;9:44. https://doi.org/10.3389/fphys.2018.00044
72. Eriksson EK, Agmo Hernández V, Edwards K. Effect of ubiquinone-10 on the stability of biomimetic membranes of relevance for the inner mitochondrial membrane. Biochim Biophys Acta Biomembr. 2018;1860(5):1205–15. https://doi.org/10.1016/j.bbamem.2018.02.015
73. Xu Z, Huo J, Ding X, Yang M, Li L, Dai J, et al. Coenzyme Q10 improves lipid metabolism and ameliorates obesity by regulating CaMKII-mediated PDE4 inhibition. Sci Rep. 2017;7(1):8253. https://doi.org/10.1038/s41598-017-08899-7
74. Qu H, Guo M, Chai H, Wang WT, Gao ZY, Shi DZ. Effects of coenzyme Q10 on statin-induced myopathy: an updated meta-analysis of randomized controlled trials. J Am Heart Assoc. 2018;7(19):e009835. https://doi.org/10.1161/JAHA.118.009835
75. Marcoff L, Thompson PD. The role of coenzyme Q10 in statin-associated myopathy: a systematic review. J Am Coll Cardiol. 2007;49(23):2231–7. https://doi.org/10.1016/j.jacc.2007.02.049
76. Vaklavas C, Chatzizisis YS, Ziakas A, Zamboulis C, Giannoglou GD. Molecular basis of statin-associated myopathy. Atherosclerosis. 2009;202(1):18–28. https://doi.org/10.1016/j.atherosclerosis.2008.05.021
77. Hattori T, Saito K, Takemura M, Ito H, Ohta H, Wada H, et al. Statin-induced Ca(2+) release was increased in B lymphocytes in patients who showed elevated serum creatine kinase during statin treatment. J Atheroscler Thromb. 2009;16(6):870–7. https://doi.org/10.5551/jat.2048
78. Nakahara K, Yada T, Kuriyama M, Osame M. Cytosolic Ca2+ increase and cell damage in L6 rat myoblasts by HMGCoA reductase inhibitors. Biochem Biophys Res Commun. 1994;202(3):1579–85. https://doi.org/10.1006/bbrc.1994.2112
79. Sirvent P, Mercier J, Vassort G, Lacampagne A. Simvastatin triggers mitochondria-induced Ca2+ signaling alteration in skeletal muscle. Biochem Biophys Res Commun. 2005;329(3):1067–75. https://doi.org/10.1016/j.bbrc.2005.02.070
80. Roten L, Schoenenberger RA, Krähenbühl S, Schlienger RG. Rhabdomyolysis in association with simvastatin and amiodarone. Ann Pharmacother. 2004;38(6):978–81. https://doi.org/10.1345/aph.1D498
81. Schirris TJ, Renkema GH, Ritschel T, Voermans NC, Bilos A, van Engelen BG, et al. Statin-induced myopathy is associated with mitochondrial complex III inhibition. Cell Metab. 2015;22(3):399–407. https://doi.org/10.1016/j.cmet.2015.08.002
82. Banach M, Serban C, Sahebkar A, Ursoniu S, Rysz J, Muntner P, et al. Effects of coenzyme Q10 on statin-induced myopathy: a meta-analysis of randomized controlled trials. Mayo Clin Proc. 2015;90(1):24–34. https://doi.org/10.1016/j.mayocp.2014.08.021
83. Moßhammer D, Schaeffeler E, Schwab M, Mörike K. Mechanisms and assessment of statin-related muscular adverse effects. Br J Clin Pharmacol. 2014;78(3):454–66. https://doi.org/10.1111/bcp.12360
84. Itagaki M, Takaguri A, Kano S, Kaneta S, Ichihara K, Satoh K. Possible mechanisms underlying statin-induced skeletal muscle toxicity in L6 fibroblasts and in rats. J Pharmacol Sci. 2009;109(1):94–101. https://doi.org/10.1254/jphs.08238fp
85. Cao P, Hanai J, Tanksale P, Imamura S, Sukhatme VP, Lecker SH. Statin-induced muscle damage and atrogin-1 induction is the result of a geranylgeranylation defect. FASEB J. 2009;23(9):2844–54. https://doi.org/10.1096/fj.08-128843
86. Draeger A, Monastyrskaya K, Mohaupt M, Hoppeler H, Savolainen H, Allemann C, Babiychuk EB. Statin therapy induces ultrastructural damage in skeletal muscle in patients without myalgia. J Pathol. 2006;210(1):94–102. https://doi.org/10.1002/path.2018
87. Moriarty PM, Thompson PD, Cannon CP, Guyton JR, Bergeron J, Zieve FJ, et al. Efficacy and safety of alirocumab vs ezetimibe in statin-intolerant patients, with a statin rechallenge arm: The ODYSSEY ALTERNATIVE randomized trial. J Clin Lipidol. 2015;9(6):758–69. https://doi.org/10.1016/j.jacl.2015.08.006
88. Koren MJ, Sabatine MS, Giugliano RP, Langslet G, Wiviott SD, Ruzza A, et al. Long-term efficacy and safety of evolocumab in patients with hypercholesterolemia. J Am Coll Cardiol. 2019;74(17):2132–46. https://doi.org/10.1016/j.jacc.2019.08.1024
89. Buettner C, Lecker SH. Molecular basis for statin-induced muscle toxicity: implications and possibilities. Pharmacogenomics. 2008;9(8):1133–42. https://doi.org/10.2217/14622416.9.8.1133
90. Lotteau S, Ivarsson N, Yang Z, Restagno D, Colyer J, Hopkins P, et al. A mechanism for statin-induced susceptibility to myopathy. JACC Basic Transl Sci. 2019;4(4):509–23. https://doi.org/10.1016/j.jacbts.2019.03.012
91. Marciante KD, Durda JP, Heckbert SR, Lumley T, Rice K, McKnight B, et al. Cerivastatin, genetic variants, and the risk of rhabdomyolysis. Pharmacogenet Genomics. 2011;21(5):280–8. https://doi.org/10.1097/FPC.0b013e328343dd7d
92. Elam MB, Majumdar G, Mozhui K, Gerling IC, Vera SR, Fish-Trotter H, et al. Patients experiencing statin-induced myalgia exhibit a unique program of skeletal muscle gene expression following statin re-challenge. PLoS One. 2017;12(8):e0181308. https://doi.org/10.1371/journal.pone.0181308
93. Mangravite LM, Engelhardt BE, Medina MW, Smith JD, Brown CD, Chasman DI, et al. A statin-dependent QTL for GATM expression is associated with statin-induced myopathy. Nature. 2013;502(7471):377–80. https://doi.org/10.1038/nature12508
94. Luzum JA, Kitzmiller JP, Isackson PJ, Ma C, Medina MW, Dauki AM, et al. GATM polymorphism associated with the risk for statin-induced myopathy does not replicate in case-control analysis of 715 dyslipidemic individuals. Cell Metab. 2015;21(4):622–7. https://doi.org/10.1016/j.cmet.2015.03.003
95. Carr DF, Alfirevic A, Johnson R, Chinoy H, van Staa T, Pirmohamed M. GATM gene variants and statin myopathy risk. Nature. 2014;513(7518):E1. https://doi.org/10.1038/nature13628
96. Floyd JS, Bis JC, Brody JA, Heckbert SR, Rice K, Psaty BM. GATM locus does not replicate in rhabdomyolysis study. Nature. 2014;513(7518):E1–3. https://doi.org/10.1038/nature13629
97. Carr DF, Francis B, Jorgensen AL, Zhang E, Chinoy H, Heckbert SR, et al. Genomewide Association Study of statin-induced myopathy in patients recruited using the UK Clinical Practice Research Datalink. Clin Pharmacol Ther. 2019;106(6):1353–61. https://doi.org/10.1002/cpt.1557
98. Floyd JS, Bloch KM, Brody JA, Maroteau C, Siddiqui MK, Gregory R, et al. Pharmacogenomics of statin-related myopathy: Meta-analysis of rare variants from whole-exome sequencing. PLoS One. 2019;14(6):e0218115. https://doi.org/10.1371/journal.pone.0218115
99. Dubé MP, Zetler R, Barhdadi A, Brown AM, Mongrain I, Normand V, et al. CKM and LILRB5 are associated with serum levels of creatine kinase. Circ Cardiovasc Genet. 2014;7(6):880–6. https://doi.org/10.1161/CIRCGENETICS.113.000395
100. Kuswanto W, Burzyn D, Panduro M, Wang KK, Jang YC, Wagers AJ, et al. Poor repair of skeletal muscle in aging mice reflects a defect in local, interleukin-33-dependent accumulation of regulatory T cells. Immunity. 2016;44(2):355–67. https://doi.org/10.1016/j.immuni.2016.01.009
101. Grable-Esposito P, Katzberg HD, Greenberg SA, Srinivasan J, Katz J, Amato AA. Immune-mediated necrotizing myopathy associated with statins. Muscle Nerve. 2010;41(2):185–90. https://doi.org/10.1002/mus.21486
102. Needham M, Fabian V, Knezevic W, Panegyres P, Zilko P, Mastaglia FL. Progressive myopathy with up-regulation of MHC-I associated with statin therapy. Neuromuscul Disord. 2007;17(2):194–200. https://doi.org/10.1016/j.nmd.2006.10.007
103. Christopher-Stine L, Casciola-Rosen LA, Hong G, Chung T, Corse AM, Mammen AL. A novel autoantibody recognizing 200-kd and 100-kd proteins is associated with an immune-mediated necrotizing myopathy. Arthritis Rheum. 2010;62(9):2757–66. https://doi.org/10.1002/art.27572
104. Mammen AL, Gaudet D, Brisson D, Christopher-Stine L, Lloyd TE, Leffell MS, et al. Increased frequency of DRB1*11:01 in anti-hydroxymethylglutaryl-coenzyme A reductase-associated autoimmune myopathy. Arthritis Care Res (Hoboken). 2012;64(8):1233–7. https://doi.org/10.1002/acr.21671
105. Werner JL, Christopher-Stine L, Ghazarian SR, Pak KS, Kus JE, Daya NR, et al. Antibody levels correlate with creatine kinase levels and strength in anti-3-hydroxy-3-methylglutaryl-coenzyme A reductase-associated autoimmune myopathy. Arthritis Rheum. 2012;64(12):4087–93. https://doi.org/10.1002/art.34673
106. Parker BA, Augeri AL, Capizzi JA, Ballard KD, Troyanos C, Baggish AL, et al. Effect of statins on creatine kinase levels before and after a marathon run. Am J Cardiol. 2012;109(2):282–7. https://doi.org/10.1016/j.amjcard.2011.08.045
107. Noyes AM, Thompson PD. The effects of statins on exercise and physical activity. J Clin Lipidol. 2017;11(5):1134–44. https://doi.org/10.1016/j.jacl.2017.07.003
108. Chalchat E, Charlot K, Garcia-Vicencio S, Hertert P, Baugé S, Bourdon S, et al. Circulating microRNAs after a 24-h ultramarathon run in relation to muscle damage markers in elite athletes. Scand J Med Sci Sports. 2021;31(9):1782–95. https://doi.org/10.1111/sms.14000
109. Min PK, Park J, Isaacs S, Taylor BA, Thompson PD, Troyanos C, et al. Influence of statins on distinct circulating microRNAs during prolonged aerobic exercise. J Appl Physiol (1985). 2016;120(6):711–20. https://doi.org/10.1152/japplphysiol.00654.2015
110. Lowe K, Kubra KT, He ZY, Carey K. Vitamin D supplementation to treat statin-associated muscle symptoms: a review. Sr Care Pharm. 2019;34(4):253–7. https://doi.org/10.4140/TCP.n.2019.253
111. Gupta A, Thompson PD. The relationship of vitamin D deficiency to statin myopathy. Atherosclerosis. 2011;215(1):23–9. https://doi.org/10.1016/j.atherosclerosis.2010.11.039
112. Bikle DD. Vitamin D metabolism, mechanism of action, and clinical applications. Chem Biol. 2014;21(3):319–29. https://doi.org/10.1016/j.chembiol.2013.12.016
113. Mazidi M, Rezaie P, Vatanparast H, Kengne AP. Effect of statins on serum vitamin D concentrations: a systematic review and meta-analysis. Eur J Clin Invest. 2017;47(1):93– 101. https://doi.org/10.1111/eci.12698
114. Schwartz JB. Effects of vitamin D supplementation in atorvastatin-treated patients: a new drug interaction with an unexpected consequence. Clin Pharmacol Ther. 2009;85(2):198–203. https://doi.org/10.1038/clpt.2008.165
115. Michalska-Kasiczak M, Sahebkar A, Mikhailidis DP, Rysz J, Muntner P, Toth PP, et al. Analysis of vitamin D levels in patients with and without statin-associated myalgia — a systematic review and meta-analysis of 7 studies with 2420 patients. Int J Cardiol. 2015;178:111–6. https://doi.org/10.1016/j.ijcard.2014.10.118
116. Ahmed W, Khan N, Glueck CJ, Pandey S, Wang P, Goldenberg N, et al. Low serum 25 (OH) vitamin D levels (<32 ng/mL) are associated with reversible myositis-myalgia in statin-treated patients. Transl Res. 2009;153(1):11–6. https://doi.org/10.1016/j.trsl.2008.11.002
117. Glueck CJ, Lee K, Prince M, Milgrom A, Makadia F, Wang P. Low serum vitamin D, statin associated muscle symptoms, vitamin D supplementation. Atherosclerosis. 2017;256:125–7. https://doi.org/10.1016/j.atherosclerosis.2016.11.027
118. Jetty V, Glueck CJ, Wang P, Shah P, Prince M, Lee K, et al. Safety of 50,000–100,000 units of vitamin D3/week in vitamin D-deficient, hypercholesterolemic patients with reversible statin intolerance. N Am J Med Sci. 2016;8(3):156–62. https://doi.org/10.4103/1947-2714.179133
119. Kang JH, Nguyen QN, Mutka J, Le QA. Rechallenging statin therapy in veterans with statin-induced myopathy post vitamin D replenishment. J Pharm Pract. 2017;30(5):521–7. https://doi.org/10.1177/0897190016674407
120. Wadhera RK, Steen DL, Khan I, Giugliano RP, Foody JM. A review of low-density lipoprotein cholesterol, treatment strategies, and its impact on cardiovascular disease morbidity and mortality. J Clin Lipidol. 2016;10(3):472–89. https://doi.org/10.1016/j.jacl.2015.11.010
121. Safitri N, Alaina MF, Pitaloka DAE, Abdulah R. A narrative review of statin-induced rhabdomyolysis: molecular mechanism, risk factors, and management. Drug Healthc Patient Saf. 2021;13:211–9. https://doi.org/10.2147/DHPS.S333738
122. Di Stasi SL, MacLeod TD, Winters JD, Binder-Macleod SA. Effects of statins on skeletal muscle: a perspective for physical therapists. Phys Ther. 2010;90(10):1530–42. https://doi.org/10.2522/ptj.20090251
123. Tanaka S, Sakamoto K, Yamamoto M, Mizuno A, Ono T, Waguri S, et al. Mechanism of statin-induced contractile dysfunction in rat cultured skeletal myofibers. J Pharmacol Sci. 2010;114(4):454–63. https://doi.org/10.1254/jphs.10229fp
124. Sakamoto K, Honda T, Yokoya S, Waguri S, Kimura J. Rabsmall GTPases are involved in fluvastatin and pravastatin-induced vacuolation in rat skeletal myofibers. FASEB J. 2007;21(14):4087–94. https://doi.org/10.1096/fj.07-8713com
125. Shitara Y, Sugiyama Y. Pharmacokinetic and pharmacodynamic alterations of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors: drug-drug interactions and interindividual differences in transporter and metabolic enzyme functions. Pharmacol Ther. 2006;112(1):71–105. https://doi.org/10.1016/j.pharmthera.2006.03.003
126. Knauer MJ, Urquhart BL, Meyer zu Schwabedissen HE, Schwarz UI, Lemke CJ, Leake BF, et al. Human skeletal muscle drug transporters determine local exposure and toxicity of statins. Circ Res. 2010;106(2):297–306. https://doi.org/10.1161/CIRCRESAHA.109.203596
127. Silva M, Matthews ML, Jarvis C, Nolan NM, Belliveau P, Malloy M, Gandhi P. Meta-analysis of drug-induced adverse events associated with intensive-dose statin therapy. Clin Ther. 2007;29(2):253–60. https://doi.org/10.1016/j.clinthera.2007.02.008
128. Muñoz-Blanco A, Gómez-Huelgas R, Gómez-Cerezo JF. Statin-associated muscle symptoms: myth or reality? Rev Clin Esp (Barc). 2022;222(10):602–11. https://doi.org/10.1016/j.rceng.2022.03.006
129. Sychev DA, Ostroumova OD, Pereverzev AP, eds. Drug-induced diseases. V. I. Moscow: Prometheus; 2022 (In Russ.).
130. Canestaro WJ, Austin MA, Thummel KE. Genetic factors affecting statin concentrations and subsequent myopathy: a HuGENet systematic review. Genet Med. 2014;16(11):810–9. https://doi.org/10.1038/gim.2014.41
131. SEARCH Collaborative Group; Link E, Parish S, Armitage J, Bowman L, Heath S, et al. SLCO1B1 variants and statin-induced myopathy — a genomewide study. N Engl J Med. 2008;359(8):789–99. https://doi.org/10.1056/NEJMoa0801936
132. Danik JS, Chasman DI, MacFadyen JG, Nyberg F, Barratt BJ, Ridker PM. Lack of association between SLCO1B1 polymorphisms and clinical myalgia following rosuvastatin therapy. Am Heart J. 2013;165(6):1008–14. https://doi.org/10.1016/j.ahj.2013.01.025
133. Omar MA, Wilson JP. FDA adverse event reports on statin-associated rhabdomyolysis. Ann Pharmacother. 2002;36(2):288–95. https://doi.org/10.1345/aph.1A289
134. Newman CB, Preiss D, Tobert JA, Jacobson TA, Page RL 2nd, Goldstein LB, et al. Statin safety and associated adverse events: a scientific statement from the american heart association. Arterioscler Thromb Vasc Biol. 2019;39(2):e38–e81. https://doi.org/10.1161/ATV.0000000000000073
135. LaRosa JC, Grundy SM, Waters DD, Shear C, Barter P, Fruchart JC, et al. Intensive lipid lowering with atorvastatin in patients with stable coronary disease. N Engl J Med. 2005;352(14):1425–35. https://doi.org/10.1056/NEJMoa050461
136. Schech S, Graham D, Staffa J, Andrade SE, La Grenade L, Burgess M, et al. Risk factors for statin-associated rhabdomyolysis. Pharmacoepidemiol Drug Saf. 2007;16(3):352–8. https://doi.org/10.1002/pds.1287
137. Kukharchuk VV, Ezhov MV, Sergienko IV, Arabidze GG, Bubnova MG, Balakhonova TV, et al. Diagnostics and correction of lipid metabolism disorders to prevent and treat atherosclerosis. Russian recommendations, VII revision. Journal of Atherosclerosis and Dyslipidemias. 2020;(1):7–40 (In Russ.). https://doi.org/10.34687/2219-8202.JAD.2020.01.0002
138. Rosenson RS, Miller K, Bayliss M, Sanchez RJ, Baccara-Dinet MT, Chibedi-De-Roche D, et al. The Statin-associated muscle symptom clinical index (SAMS-CI): revision for clinical use, content validation, and inter-rater reliability. Cardiovasc Drugs Ther. 2017;31(2):179–86. https://doi.org/10.1007/s10557-017-6723-4
139. Lamperti C, Naini AB, Lucchini V, Prelle A, Bresolin N, Moggio M, et al. Muscle coenzyme Q10 level in statin-related myopathy. Arch Neurol. 2005;62(11):1709–12. https://doi.org/10.1001/archneur.62.11.1709
140. Gambelli S, Dotti MT, Malandrini A, Mondelli M, Stromillo ML, Gaudiano C, et al. Mitochondrial alterations in muscle biopsies of patients on statin therapy. J Submicrosc Cytol Pathol. 2004;36(1):85–9. PMID: 15311678
141. Villa L, Lerario A, Calloni S, Peverelli L, Matinato C, De Liso F, et al. Immune-mediated necrotizing myopathy due to statins exposure. Acta Myol. 2018;37(4):257–62. PMID: 30944904
142. Somagutta MKR, Shama N, Pormento MKL, Jagani RP, Ngardig NN, Ghazarian K, et al. Statin-induced necrotizing autoimmune myopathy: a systematic review. Reumatologia. 2022;60(1):63–9. https://doi.org/10.5114/reum.2022.114108
Supplementary files
Review
For citations:
Sychev D.A., Ostroumova T.M., Ostroumova O.D., Kochetkov A.I., Batyukina S.V., Mironova E.V. Statin-Induced Myopathy. Safety and Risk of Pharmacotherapy. 2023;11(3):252-270. (In Russ.) https://doi.org/10.30895/2312-7821-2023-11-3-252-270