Preview

Safety and Risk of Pharmacotherapy

Advanced search

Magnesium Orotate Influence on Thoracic Aorta in Laboratory Rabbits Receiving Levofloxacin

https://doi.org/10.30895/2312-7821-2024-393

Abstract

INTRODUCTION. Fluoroquinolones are antibacterial agents associated with adverse drug reactions (ARDs), including aortic lesions; this ARD risk limits the use of fluoroquinolones. Moreover, fluoroquinolones have been reported to induce lesions in other connective tissues (cartilage, tendons), associated with magnesium deficiency.

AIM. The study aimed to analyse the effects of magnesium orotate on the thoracic aorta in laboratory rabbits treated with levofloxacin.

MATERIALS AND METHODS. The study randomised laboratory rabbits into 3 groups of 10 animals each to receive oral doses of either the carrier solution (control group), or 150 mg/kg/day levofloxacin (levofloxacin group), or 150 mg/ kg/day levofloxacin and 140 mg/kg/day magnesium orotate (levofloxacin/magnesium group). After 14 days of treatment, venous blood samples were taken to determine the serum levels of magnesium, matrix metalloproteinase-9 (MMP-9), and tissue inhibitor of matrix metalloproteinase-1 (TIMP-1), as well as MMP-9 to TIMP-1 ratios. The authors conducted morphological and mechanical characterisation of thoracic aorta samples; the mechanical characterisation involved uniaxial tensile testing. Data are presented as the mean and standard deviation values.

RESULTS. The study did not detect any changes in the serum MMP-9, TIMP-1, and magnesium levels or in the MMP-9/TIMP-1 ratios. The authors identified foci of moderate elastic fibre fragmentation in the aortic media in 5 of 10 aortic samples from the levofloxacin group, in 1 of 10 samples from the levofloxacin/magnesium group, and in none from the control group (p=0.013). Rabbits from the levofloxacin group had significantly fewer medial elastic membranes than the others (p=0.015; vs the control group: p=0.022), and their elastic mem

About the Authors

N. V. Izmozherova
Ural State Medical University; Institute of High Temperature Electrochemistry of the Ural Branch of the Russian Academy of Sciences
Russian Federation

Nadezhda V. Izmozherova, Dr. Sci. (Med.), Associate Professor

3 Repina St., Ekaterinburg 620028; 
20 Akademicheskaya St., Ekaterinburg 620066



D. V. Zaytsev
Ural State Mining University
Russian Federation

Dmitry V. Zaytsev, Dr. Sci. (Phys.-Math.)

30 Kuybyshev St., Ekaterinburg 620144



V. V. Bazarny
Ural State Medical University
Russian Federation

Vladimir V. Bazarnyi, Dr. Sci. (Med.), Professor

3 Repina St., Ekaterinburg 620028



V. M. Bakhtin
Ural State Medical University; Institute of High Temperature Electrochemistry of the Ural Branch of the Russian Academy of Sciences
Russian Federation

Viktor M. Bakhtin

3 Repina St., Ekaterinburg 620028; 
20 Akademicheskaya St., Ekaterinburg 620066



L. G. Polushina
Ural State Medical University
Russian Federation

Larisa G. Polushina, Cand. Sci. (Med.)

3 Repina St., Ekaterinburg 620028



M. A. Kopenkin
Ural State Medical University
Russian Federation

Maksim A. Kopenkin

3 Repina St., Ekaterinburg 620028



D. V. Tolstykh
Ural State Medical University
Russian Federation

Dmitry V. Tolstykh

3 Repina St., Ekaterinburg 620028



E. A. Mukhlynina
Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences
Russian Federation

Elena A. Mukhlynina, Cand. Sci. (Biol.)

106 Pervomayskaya St., Ekaterinburg 620049



References

1. Tanne JH. FDA adds “black box” warning label to fluoroquinolone antibiotics. BMJ. 2008;337(7662):135. https://doi.org/10.1136/BMJ.A816

2. Gopalakrishnan C, Bykov K, Fischer MA, Connolly JG, Gagne JJ, Fralick M. Association of fluoroquinolones with the risk of aortic aneurysm or aortic dissection. JAMA Intern Med. 2020;180(12):1596–605. https://doi.org/10.1001/JAMAINTERNMED.2020.4199

3. Sommet A, Bénévent J, Rousseau V, Chebane L, Douros A, Montastruc JL, et al. What fluoroquinolones have the highest risk of aortic aneurysm? A case/non-case study in VigiBase®. J Gen Intern Med. 2019;34(4):502–3. https://doi.org/10.1007/S11606-018-4774-2

4. Meng L, Huang J, Jia Y, Huang H, Qiu F, Sun S. Assessing fluoroquinolone-associated aortic aneurysm and dissection: data mining of the public version of the FDA adverse event reporting system. Int J Clin Pract. 2019;73(5):e13331. https://doi.org/10.1111/IJCP.13331

5. Bennett AC, Bennett CL, Witherspoon BJ, Knopf KB. An evaluation of reports of ciprofloxacin, levofloxacin, and moxifloxacin-association neuropsychiatric toxicities, long-term disability, and aortic aneurysms/dissections disseminated by the Food and Drug Administration and the European Medicines Agency. Expert Opin Drug Saf. 2019;18(11):1055–63. https://doi.org/10.1080/14740338.2019.1665022

6. Takagi H, Hari Y, Nakashima K, Kuno T, Ando T. Matrix metalloproteinases and acute aortic dissection: “Et tu, Brute?” Interact Cardiovasc Thorac Surg. 2020;30(3):465–76. https://doi.org/10.1093/ICVTS/IVZ286

7. Guzzardi DG, Teng G, Kang S, Geeraert PJ, Pattar SS, Svystonyuk DA, et al. Induction of human aortic myofibroblast-mediated extracellular matrix dysregulation: a potential mechanism of fluoroquinolone-associated aortopathy. J Thorac Cardiovasc Surg. 2019;157(1):109–19.e2. https://doi.org/10.1016/J.JTCVS.2018.08.079

8. Yu PH, Hu CF, Liu JW, Chung CH, Chen YC, Sun CA, Chien WC. The incidence of collagen-associated adverse events in pediatric population with the use of fluoroquinolones: a nationwide cohort study in Taiwan. BMC Pediatr. 2020;20(1):64. https://doi.org/10.1186/S12887-020-1962-0

9. Alves C, Mendes D, Marques FB. Fluoroquinolones and the risk of tendon injury: a systematic review and meta-analysis. Eur J Clin Pharmacol. 2019;75(10):1431–43. https://doi.org/10.1007/S00228-019-02713-1

10. Shakibaei M, De Souza P, Van Sickle D, Stahlmann R. Biochemical changes in Achilles tendon from juvenile dogs after treatment with ciprofloxacin or feeding a magnesium-deficient diet. Arch Toxicol. 2001;75(6):369–74. https://doi.org/10.1007/s002040100243

11. Bisaccia DR, Aicale R, Tarantino D, Peretti GM, Maffulli N. Biological and chemical changes in fluoroquinolone-associated tendinopathies: a systematic review. Br Med Bull. 2019;130(1):39–49. https://doi.org/10.1093/BMB/LDZ006

12. Bakhtin VM, Izmozherova NV, Belokonova NA. Complexation of fluoroquinolones with magnesium ions. Bulletin of Siberian Medicine. 2022;21(3):6–12 (In Russ.). https://doi.org/10.20538/1682-0363-2022-3-6-12

13. Rubin H. The membrane, magnesium, mitosis (MMM) model of cell proliferation control. Magnes Res. 2005;18(4):268–74. PMID: 16548142

14. Zhang K, Chen JF. The regulation of integrin function by divalent cations. Cell Adh Migr. 2012;6(1):20–9. https://doi.org/10.4161/CAM.18702

15. de Baaij JHF, Hoenderop JGJ, Bindels RJM. Magnesium in man: implications for health and disease. Physiol Rev. 2015;95(1):1–46. https://doi.org/10.1152/PHYSREV.00012.2014

16. Pfister K, Mazur D, Vormann J, Stahlmann R. Diminished ciprofloxacin-induced chondrotoxicity by supplementation with magnesium and vitamin E in immature rats. Antimicrob Agents Chemother. 2007;51(3):1022–7. https://doi.org/10.1128/AAC.01175-06

17. Ushkalova EA, Zyryanov SK. Fluoroquinolone use restrictions in patients with uncomplicated infections and safety issues. Clinical microbiology and antimicrobial therapy. 2017;19(3):208–13 (In Russ.). EDN: ZWZREB

18. Guskova TA, Khokhlov AL, Romanov BK, Alyautdin RN, Sinitsina OA, Speshilova SA, et al. Drug safety: from preclinic to clinic. Moscow–Yaroslavl: Avers Plus; 2018 (In Russ.). EDN: XMBDBR

19. Vormann J, Förster C, Zippel U, Lozo E, Günther T, Merker HJ et al. Effects of magnesium deficiency on magnesium and calcium content in bone and cartilage in developing rats in correlation to chondrotoxicity. Calcif Tissue Int. 1997;61(3):230–8. https://doi.org/10.1007/s002239900328

20. Stahlmann R, Förster C, Shakibaei M, Vormann J, Günther T, Merker HJ. Magnesium deficiency induces joint cartilage lesions in juvenile rats which are identical to quinolone-induced arthropathy. Antimicrob Agents Chemother. 1995;39(9):2013–8. https://doi.org/10.1128/AAC.39.9.2013

21. Hirose T, Shimazaki T, Takahashi N, Fukada T, Watanabe T, Tangkawattana P, et al. Morphometric analysis of thoracic aorta in Slc39a13/Zip13-KO mice. Cell Tissue Res. 2019;376(1):137–41. https://doi.org/10.1007/s00441-018-2977-9

22. Carr-White GS, Afoke A, Birks EJ, Hughes S, O’Halloran A, Glennen S, et al. Aortic root characteristics of human pulmonary autografts. Circulation. 2000;102(19 Suppl 3):III15–21. https://doi.org/10.1161/01.CIR.102.SUPPL_3.III-15

23. Bakhtin VM, Izmozherova NV. Magnesium orotate influence on rabbits receiving levofloxacin thoracic aorta strength. In: Current issues of modern medical science and healthcare: collection of articles of the VIII International scientific and practical conference of young scientists and students. Ekaterinburg; 2023. P. 2951–6 (In Russ.). EDN: SXTKYY

24. Lee CC, Lee MG, Hsieh R, Porta L, Lee WC, Lee SH, Chang SS. Oral fluoroquinolone and the risk of aortic dissection. J Am Coll Cardiol. 2018;72(12):1369–78. https://doi.org/10.1016/j.jacc.2018.06.067

25. LeMaire SA, Zhang L, Luo W, Ren P, Azares AR, Wang Y, et al. Effect of ciprofloxacin on susceptibility to aortic dissection and rupture in mice. JAMA Surg. 2018;153(9):e181804. https://doi.org/10.1001/JAMASURG.2018.1804

26. Wei HK, Yang SD, Bai ZL, Zhang X, Yang DL, Ding WY. Levofloxacin increases apoptosis of rat annulus fibrosus cells via the mechanism of upregulating MMP-2 and MMP-13. Int J Clin Exp Med. 2015;8(11):20198. PMID: 26884932

27. Zaytsev DV, Izmozherova NV, Bakhtin VM. Effect of fluoroquinolones on the mechanical strength of connective tissue structures of laboratory rabbits under uniaxial tension. In: Actual Issues of Strength. Ekaterinburg; 2022. P. 376–8 (In Russ.). EDN: HNLRWV

28. Vorp DA, Schiro BJ, Ehrlich MP, Juvonen TS, Ergin MA, Griffith BP. Effect of aneurysm on the tensile strength and biomechanical behavior of the ascending thoracic aorta. Ann Thorac Surg. 2003;75(4):1210–4. https://doi.org/10.1016/S0003-4975(02)04711-2

29. Sugita S, Matsumoto T. Heterogeneity of deformation of aortic wall at the microscopic level: contribution of heterogeneous distribution of collagen fibers in the wall. Biomed Mater Eng. 2013;23(6):447–61. https://doi.org/10.3233/BME-130771

30. Pagès N, Gogly B, Godeau G, Igondjo-Tchen S, Maurois P, Durlach J, et al. Structural alterations of the vascular wall in magnesium-deficient mice. A possible role of gelatinases A (MMP-2) and B (MMP-9). Magnes Res. 2003;16(1):43–8. PMID: 12735482

31. Cocciolone AJ, Hawes JZ, Staiculescu MC, Johnson EO, Murshed M, Wagenseil JE. Elastin, arterial mechanics, and cardiovascular disease. Am J Physiol Heart Circ Physiol. 2018;315(2):H189–H205. https://doi.org/10.1152/AJPHEART.00087.2018

32. Egerbacher M, Wolfesberger B, Gabler C. In vitro evidence for effects of magnesium supplementation on quinolone-treated horse and dog chondrocytes. Vet Pathol. 2001;38(2):143–8. https://doi.org/10.1354/vp.38-2-143

33. Gromova OA, Kalacheva AG, Torshin IYu, Grustlivaya UE, Prozorova NV, Egorova EYu, et al. On the diagnosis of magnesium deficiency. Part 1. Archive of Internal Medicine. 2014;2(16):5–10 (In Russ.). EDN: RDQRDG

34. de Baaij JHF, Hoenderop JGJ, Bindels RJM. Magnesium in man: implications for health and disease. Phy siol Rev. 2015;95(1):1–46. https://doi.org/10.1152/PHYSREV.00012.2014

35. Bobkowski W, Nowak A, Durlach J. The importance of magnesium status in the pathophysiology of mitral valve prolapse. Magnes Res. 2005;18(1):35–52. PMID: 15945614

36. Rubin H. Central roles of Mg2+ and MgATP2in the regulation of protein synthesis and cell proliferation: significance for neoplastic transformation. Adv Cancer Res. 2005;93:1–58. https://doi.org/10.1016/S0065-230X(05)93001-7

37. Rubin H. The logic of the membrane, magnesium, mitosis (MMM) model for the regulation of animal cell proliferation. Arch Biochem Biophys. 2007;458(1):16–23. https://doi.org/10.1016/J.ABB.2006.03.026

38. Nunes AM, Minetti CASA, Remeta DP, Baum J. Magnesium activates microsecond dynamics to regulate integrin-collagen recognition. Structure. 2018;26(8):1080–90.e5. https://doi.org/10.1016/J.STR.2018.05.010

39. Förster C, Kociok K, Shakibaei M, Merker HJ, Vormann J, Günther T, et al. Integrins on joint cartilage chondrocytes and alterations by ofloxacin or magnesium deficiency in immature rats. Arch Toxicol. 1996;70(5):261–70. https://doi.org/10.1007/s002040050272

40. Egerbacher M, Wolfesberger B, Walter I, Seiberl G. Integrins mediate the effects of quinolones and magnesium deficiency on cultured rat chondrocytes. Eur J Cell Biol. 1999;78(6):391–7. https://doi.org/10.1016/S0171-9335(99)80081-8

41. Nie X, Sun X, Wang C, Yang J. Effect of magnesium ions/Type I collagen promote the biological behavior of osteoblasts and its mechanism. Regen Biomater. 2020;7(1):53–61. https://doi.org/10.1093/RB/RBZ033

42. Chen R, Zhou X, Yin S, Lu Z, Nie J, Zhou W, et al. [Study on the protective mechanism of autophagy on cartilage by magnesium sulfate]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2018;32(10):1340–5 (In Chinese). https://doi.org/10.7507/1002-1892.201804015

43. Yao H, Xu JK, Zheng NY, Wang JL, Mok SW, Lee YW, et al. Intra-articular injection of magnesium chloride attenuates osteoarthritis progression in rats. Osteoarthr Cartil. 2019;27(12):1811–21. https://doi.org/10.1016/J.JOCA.2019.08.007

44. Shibata M, Ueshima K, Harada M, Nakamura M, Hiramori K, Endo S, et al. Effect of magnesium sulfate pretreatment and significance of matrix metalloproteinase-1 and interleukin-6 levels in coronary re perfusion therapy for patients with acute myocardial infarction. Angiology. 1999;50(7):573–82. https://doi.org/10.1177/000331979905000707


Supplementary files

Review

For citations:


Izmozherova N.V., Zaytsev D.V., Bazarny V.V., Bakhtin V.M., Polushina L.G., Kopenkin M.A., Tolstykh D.V., Mukhlynina E.A. Magnesium Orotate Influence on Thoracic Aorta in Laboratory Rabbits Receiving Levofloxacin. Safety and Risk of Pharmacotherapy. 2024;12(3):341-351. (In Russ.) https://doi.org/10.30895/2312-7821-2024-393

Views: 967


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2312-7821 (Print)
ISSN 2619-1164 (Online)