Preview

Safety and Risk of Pharmacotherapy

Advanced search

Enhancing the Efficacy and Safety of Methotrexate Treatment: A Focus on Drug Interactions (Review)

https://doi.org/10.30895/2312-7821-2024-416

Abstract

INTRODUCTION. Methotrexate (MTX) is the main disease-modifying antirheumatic drug (DMARD) and the gold standard for the safety and efficacy evaluation of biologicals and targeted small molecules. However, its narrow therapeutic range, interpatient variability in pharmacokinetics and pharmacodynamics, and potential clinically relevant drug–drug interactions (DDIs) may lead to treatment failure and increase the risk of adverse drug reactions (ADRs).

AIM. The study aimed to describe the main clinically significant DDIs associated with MTX used in rheumatic disease therapy and determine possible approaches to addressing this issue based on a literature review.

DISCUSSION. MTX is characterised by pharmacokinetic DDIs during absorption, cell penetration, and elimination. Some non-steroidal anti-inflammatory drugs (NSAIDs), theophylline, sulfasalazine, antibacterial agents, and proton pump inhibitors (PPIs) affect MTX elimination and therapeutic effects. The main ADRs associated with MTX include haematotoxicity, hepatotoxicity, lung tissue damage (interstitial pneumonitis and pulmonary fibrosis), and renal dysfunction. The severity of these ADRs depends on the dose, comorbidities, and concomitant therapy. The toxicity of MTX may be increased by the concomitant administration of medicinal products that exhibit haematotoxicity and affect renal function (impair the elimination of medicines). When co-administering MTX and medicines having clinically significant DDIs described in the literature, healthcare providers should consider the risk factors for each individual patient. The most significant risk factors include moderate to severe renal and hepatic impairment, older age, polypharmacy, and hypoalbuminemia.

CONCLUSIONS. This article describes potential clinically significant interactions between MTX and certain NSAIDs, antibacterial agents, and PPIs that depend on individual patient characteristics and may increase the toxicity or decrease the effectiveness of MTX. MTX deprescribing, short-term withdrawal, and dosing optimisation may be considered as approaches to DDI risk mitigation.

About the Authors

S. A. Doktorova
Immanuel Kant Baltic Federal University
Russian Federation

Svetlana A. Doktorova

14 A. Nevsky St., Kaliningrad 236041



Yu. Yu. Grabovetskaya
Immanuel Kant Baltic Federal University; Clinical and Diagnostic Outpatient Clinic of the Regional Clinical Hospital of the Kaliningrad Region
Russian Federation

Yuliya Yu. Grabovetskaya

14 A. Nevsky St., Kaliningrad 236041; 

74 Klinicheskaya St., Kaliningrad 236016



M. Stefanov
Immanuel Kant Baltic Federal University
Russian Federation

Michail Stefanov

14 A. Nevsky St., Kaliningrad 236041



V. V. Rafalskiy
Immanuel Kant Baltic Federal University
Russian Federation

Vladimir V. Rafalskiy, Dr. Sci. (Med.), Professor

14 A. Nevsky St., Kaliningrad 236041



References

1. Weinblatt ME. Methotrexate in rheumatoid arthritis: a quarter century of development. Trans Am Clin Climatol Assoc. 2013;124:16–25. PMID: 23874006

2. Nasonov EL, Karateev DE, Satybaldyev AM, Luchikhina EL, Lukina GV, Nikolenko MV, et al. Rheumatoid arthritis in the Russian Federation according to Russian Arthritis Registry data (communication I). Rheumatology Science and Practice. 2016;54:50–62 (In Russ.). https://doi.org/10.14412/1995-4484-2016-50-62

3. Braun J, Kästner P, Flaxenberg P, Währisch J, Hanke P, Demary W, et al. Comparison of the clinical efficacy and safety of subcutaneous versus oral administration of methotrexate in patients with active rheumatoid arthritis: results of a six-month, multicenter, randomized, double-blind, controlled, phase IV trial. Arthritis Rheum. 2008;58(1):73–81. https://doi.org/10.1002/art.23144

4. Anghel L-A. Utilization patterns of disease-modifying antirheumatic drugs (DMARDs) in patients with autoimmune rheumatic diseases. Farmacia. 2019;67(1):184–92. https://doi.org/10.31925/farmacia.2019.1.25

5. Levitan AI, Reshetko OV. Treatment of rheumatoid arthritis in the real-life practice. Clin Pharmacol Therapy 2019;28(1):44–9 (In Russ.). https://doi.org/10.32756/0869-5490-2019-1-44-49

6. Nasonov EL, Mazurov VI, Karateev DE, Lukina GV, Zhilyaev EV, Amirdzhanova VN, et al. Project: recommendations on treatment of rheumatoid arthritis developed by all-Russian public organization “Association of Rheumatologists of Russia” — 2014 (part 1). Rheumatology Science and Practice. 2014;52(5):477–94 (In Russ.). https://doi.org/10.14412/1995-4484-2014-477-494

7. Fraenkel L, Bathon JM, England BR, St Clair EW, Arayssi T, Carandang K, et al. 2021 American College of Rheumatology Guideline for the treatment of rheumatoid arthritis. Arthritis Rheumatol. 2021;73(7):1108–23. https://doi.org/10.1002/acr.24596

8. Lau CS, Chia F, Dans L, Harrison A, Hsieh TY, Jain R, et al. 2018 update of the APLAR recommendations for treatment of rheumatoid arthritis. Int J Rheum Dis. 2019;22(3):357–75. https://doi.org/10.1111/1756-185x.13513

9. Smolen JS, Landewé RBM, Bergstra SA, Kerschbaumer A, Sepriano A, Aletaha D, et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2022 update. Ann Rheum Dis. 2023;82(1):3–18. https://doi.org/10.1136/ard-2022-223356

10. Nasonov EL, Amirjanova VN, Olyunin YA, Muravyev YV, Baranov AA, Zonova EV, et al. The use of methotrexate in rheumatoid arthritis. Recommendations of the all-Russian public organization “Association of Rheumatologists of Russia”. Rheumatology Science and Practice. 2023;61(4):435–49. https://doi.org/10.47360/1995-4484-2023-435-449

11. Nasonov EL, Karateev DE, Chichasova NV. New recommendations for the management of rheumatoid arthritis (EULAR, 2013): the role of methotrexate. Rheumatology Science and Practice. 2015;53(5s):32–50 (In Russ.). https://doi.org/10.14412/1995-4484-2015-32-50

12. Tarp S, Jorgensen TS, Furst DE, Dossing A, Taylor PC, Choy EH, et al. Added value of combining methotrexate with a biological agent compared to biological monotherapy in rheumatoid arthritis patients: a systematic review and meta-analysis of randomised trials. Semin Arthritis Rheum. 2019;48(6):958–66. https://doi.org/10.1016/j.semarthrit.2018.10.002

13. Silva MF, Ribeiro C, Goncalves VMF, Tiritan ME, Lima A. Liquid chromatographic methods for the therapeutic drug monitoring of methotrexate as clinical decision support for personalized medicine: a brief review. Biomed Chromatogr. 2018;32(5):e4159. https://doi.org/10.1002/bmc.4159

14. Bagatini F, Blatt CR, Maliska G, Trespash GV, Pereira IA, Zimmermann AF, et al. Potential drug interactions in patients with rheumatoid arthritis. Rev Bras Reumatol. 2011;51(1):20–39. English, Portuguese. PMID: 21412604

15. Ma SN, Zaman Huri H, Yahya F. Drug-related problems in patients with rheumatoid arthritis. Ther Clin Risk Manag. 2019;15:505–24. https://doi.org/10.2147/TCRM.S194921

16. Jeong H, Baek SY, Kim SW, Eun YH, Kim IY, Kim H, et al. Comorbidities of rheumatoid arthritis: results from the Korean National Health and Nutrition Examination Survey. PLoS One. 2017;12(4):e0176260. https://doi.org/10.1371/journal.pone.0176260

17. Bechman K, Clarke BD, Rutherford AI, Yates M, Nikiphorou E, Molokhia M, et al. Polypharmacy is associated with treatment response and serious adverse events: results from the British Society for Rheumatology Biologics Register for Rheumatoid Arthritis. Rheumatology. 2019;58(10):1767–76. https://doi.org/10.1093/rheumatology/kez037

18. Ye L, Yang-Huang J, Franse CB, Rukavina T, Vasiljev V, Mattace-Raso F, et al. Factors associated with polypharmacy and the high risk of medication-related problems among older community-dwelling adults in European countries: a longitudinal study. BMC Geriatr. 2022;22(1):841. https://doi.org/10.1186/s12877-022-03536-z

19. Bourré-Tessier J, Haraoui B. Methotrexate drug interactions in the treatment of rheumatoid arthritis: a systematic review. J Rheumatol. 2010;37(7):1416–21. https://doi.org/10.3899/jrheum.090153

20. Hall JJ, Bolina M, Chatterley T, Jamali F. Interaction between low-dose methotrexate and non-steroidal anti-inflammatory drugs, penicillins, and proton pump inhibitors. Ann Pharmacother. 2016;51(2):163–78. https://doi.org/10.1177/1060028016672035

21. Pflugbeil S, Böckl K, Pongratz R, Leitner M, Graninger W, Ortner A. Drug interactions in the treatment of rheumatoid arthritis and psoriatic arthritis. Rheumatol Int. 2020;40(4):511–21. https://doi.org/10.1007/s00296-020-04526-3

22. Leveque D, Santucci R, Gourieux B, Herbrecht R. Pharmacokinetic drug-drug interactions with methotrexate in oncology. Expert Rev Clin Pharmacol. 2011;4(6):743–50. https://doi.org/10.1586/ecp.11.57

23. Patane M, Ciriaco M, Chimirri S, Ursini F, Naty S, Grembiale RD, et al. Interactions among low dose of methotrexate and drugs used in the treatment of rheumatoid arthritis. Adv Pharmacol Sci. 2013;2013:313858. https://doi.org/10.1155/2013/313858

24. Desmoulin SK, Hou Z, Gangjee A, Matherly LH. The human proton-coupled folate transporter: biology and therapeutic applications to cancer. Cancer Biol Ther. 2012;13(14):1355–73. https://doi.org/10.4161/cbt.22020

25. Bedoui Y, Guillot X, Selambarom J, Guiraud P, Giry C, Jaffar-Bandjee MC, et al. Methotrexate an old drug with new tricks. Int J Mol Sci. 2019;20(20).5023. https://doi.org/10.3390/ijms20205023

26. Bannwarth B, Pehourcq F, Schaeverbeke T, Dehais J. Clinical pharmacokinetics of low-dose pulse methotrexate in rheumatoid arthritis. Clin Pharmacokinet. 1996;30(3):194–210. https://doi.org/10.2165/00003088-199630030-00002

27. Hoekstra M, Haagsma C, Neef C, Proost J, Knuif A, van de Laar M. Bioavailability of higher dose methotrexate comparing oral and subcutaneous administration in patients with rheumatoid arthritis. J Rheumatol. 2004;31(4):645–8. PMID: 15088287

28. Bianchi G, Caporali R, Todoerti M, Mattana P. Methotrexate and rheumatoid arthritis: current evidence regarding subcutaneous versus oral routes of administration. Adv Ther. 2016;33(3):369–78. https://doi.org/10.1007/s12325-016-0295-8

29. Maksimovic V, Pavlovic-Popovic Z, Vukmirovic S, Cvejic J, Mooranian A, Al-Salami H, et al. Molecular mechanism of action and pharmacokinetic properties of methotrexate. Mol Biol Rep. 2020;47(6):4699–708. https://doi.org/10.1007/s11033-020-05481-9

30. Bezabeh S, Mackey AC, Kluetz P, Jappar D, Korvick J. Accumulating evidence for a drug–drug interaction between methotrexate and proton pump inhibitors. Oncologist. 2012;17(4):550–4. https://doi.org/10.1634/theoncologist.2011-0431

31. Inoue K, Yuasa H. Molecular basis for pharmacokinetics and pharmacodynamics of methotrexate in rheumatoid arthritis therapy. Drug Metab Pharmacokinet. 2014;29(1):12–9. https://doi.org/10.2133/dmpk.dmpk-13-rv-119

32. Seideman P, Beck O, Eksborg S, Wennberg M. The pharmacokinetics of methotrexate and its 7-hydroxy metabolite in patients with rheumatoid arthritis. Br J Clin Pharmacol. 1993;35(4):409–12. https://doi.org/10.1111/j.1365-2125.1993.tb04158.x

33. Lima A, Sousa H, Monteiro J, Azevedo R, Medeiros R, Seabra V. Genetic polymorphisms in low-dose methotrexate transporters: current relevance as methotrexate therapeutic outcome biomarkers. Pharmacogenomics. 2014;15(12):1611–35. https://doi.org/10.2217/pgs.14.116

34. Mikkelsen TS, Thorn CF, Yang JJ, Ulrich CM, French D, Zaza G, et al. PharmGKB summary: methotrexate pathway. Pharmacogenet Genomics. 2011;21(10):679–86. https://doi.org/10.1097/FPC.0b013e328343dd93

35. Valiev TT, Semenova VV, Ikonnikova AY, Petrova AA, Belysheva TS, Nasedkina TV. Role of pharmacogenetic factors in the development of side effects of methotrexate in the treatment of malignant tumors: a review. Journal of Modern Oncology. 2021;23(4):622–7 (In Russ.). https://doi.org/10.26442/18151434.2021.4.201127

36. Murakami T, Mori N. Involvement of multiple transporters-mediated transports in mizoribine and methotrexate pharmacokinetics. Pharmaceuticals (Basel). 2012;5(8):802–36. https://doi.org/10.3390/ph5080802

37. Chabner BA, Allegra CJ, Curt GA, Clendeninn NJ, Baram J, Koizumi S, et al. Polyglutamation of methotrexate. Is methotrexate a prodrug? J Clin Invest. 1985;76(3):907–12. https://doi.org/10.1172/JCI112088

38. Neuman MG, Cameron RG, Haber JA, Katz GG, Malkiewicz IM, Shear NH. Inducers of cytochrome P450 2E1 enhance methotrexate-induced hepatocytoxicity. Clin Biochem. 1999;32(7):519–36. https://doi.org/10.1016/s0009-9120(99)00052-1

39. Thyss A, Milano G, Kubar J, Namer M, Schneider M. Clinical and pharmacokinetic evidence of a life-threatening interaction between methotrexate and ketoprofen. Lancet. 1986;1(8475):256–8. https://doi.org/10.1016/s0140-6736(86)90786-5

40. Ushkalova EA, Zyryanov SK, Butranova OI, Samsonova KI. Sodium metamizole: regulatory status around the world, safety problems and medication errors. Safety and Risk of Pharmacotherapy. 2022;10(4):396–410 (In Russ.). https://doi.org/10.30895/2312-7821-2022-10-4-396-410

41. Nozaki Y, Kusuhara H, Kondo T, Iwaki M, Shiroyanagi Y, Nakayama H, et al. Species difference in the inhibitory effect of nonsteroidal anti-inflammatory drugs on the uptake of methotrexate by human kidney slices. J Pharmacol Exp Ther. 2007;322(3):1162–70. https://doi.org/10.1124/jpet.107.121491

42. Glynn-Barnhart AM, Erzurum SC, Leff JA, Martin RJ, Cochran JE, Cott GR, Szefler SJ. Effect of low-dose methotrexate on the disposition of glucocorticoids and theophylline. J Allergy Clin Immunol. 1991;88(2):180–6. https://doi.org/10.1016/0091-6749(91)90326-j

43. Okada M, Fujii H, Suga Y, Morito S, Okada M, Nishigami J, et al. Drug interaction between methotrexate and salazosulfapyridine in Japanese patients with rheumatoid arthritis. J Pharm Health Care Sci. 2017;3:7. https://doi.org/10.1186/s40780-017-0073-z

44. Ronchera CL, Hernández T, Peris JE, Torres F, Granero L, Jiménez NV, Plá JM. Pharmacokinetic interaction between high-dose methotrexate and amoxycillin. Ther Drug Monit. 1993;15(5):375–9. https://doi.org/10.1097/00007691-199310000-00004

45. Al-Quteimat OM, Al-Badaineh MA. Methotrexate and trimethoprim-sulphamethoxazole: extremely serious and life-threatening combination. J Clin Pharm Ther. 2013;38(3):203–5. https://doi.org/10.1111/jcpt.12060

46. Hamid M, Lashari B, Ahsan I, Micaily I, Sarwar U, Crocetti J. A deadly prescription: combination of methotrexate and trimethoprim-sulfamethoxazole. J Community Hosp Intern Med Perspect. 2018;8(3):149–51. https://doi.org/10.1080/20009666.2018.1466598

47. Haider L, Sharif S, Hasan A, McFarlane IM. Low-dose methotrexate toxicity in the setting of vancomycin-induced acute kidney injury. Am J Med Case Rep. 2020;8(7):206–9. PMID: 32775622

48. Reid T, Yuen A, Catolico M, Carlson RW. Impact of omeprazole on the plasma clearance of methotrexate. Cancer Chemother Pharmacol. 1993;33(1):82–4. https://doi.org/10.1007/BF00686028

49. Tröger U, Stötzel B, Martens-Lobenhoffer J, Gollnick H, Meyer FP. Drug points: severe myalgia from an interaction between treatments with pantoprazole and methotrexate. BMJ. 2002;324(7352):1497. https://doi.org/10.1136/bmj.324.7352.1497

50. Bannwarth B, Labat L, Moride Y, Schaeverbeke T. Methotrexate in rheumatoid arthritis. An update. Drugs. 1994;47(1):25–50. https://doi.org/10.2165/00003495-199447010-00003

51. Miller DR, Letendre PW, DeJong DJ, Fiechtner JJ. Methotrexate in rheumatoid arthritis: an update. Pharmacotherapy. 1986;6(4):170–8. https://doi.org/10.1002/j.1875-9114.1986.tb03472.x

52. Kawase A, Yamamoto T, Egashira S, Iwaki M. Stereoselective inhibition of methotrexate excretion by glucuronides of nonsteroidal anti-inflammatory drugs via multidrug resistance proteins 2 and 4. J Pharmacol Exp Ther. 2016;356(2):366–74. https://doi.org/10.1124/jpet.115.229104

53. Frenia ML, Long KS. Methotrexate and nonsteroidal antiinflammatory drug interactions. Ann Pharmacother. 1992;26(2):234–7. https://doi.org/10.1177/106002809202600219

54. van Roon EN, van de Laar MA. Methotrexate bioavailability. Clin Exp Rheumatol. 2010;28(5 Suppl 61):S27–32. PMID: 21044430

55. Grim J, Chládek J, Martínková J. Pharmacokinetics and pharmacodynamics of methotrexate in non-neoplastic diseases. Clin Pharmacokinet. 2003;42(2):139–51. https://doi.org/10.2165/00003088-200342020-00003

56. Wang W, Zhou H, Liu L. Side effects of methotrexate therapy for rheumatoid arthritis: a systematic review. Eur J Med Chem. 2018;158:502–16. https://doi.org/10.1016/j.ejmech.2018.09.027

57. Gremese E, Alivernini S, Tolusso B, Zeidler MP, Ferraccioli G. JAK inhibition by methotrexate (and csDMARDs) may explain clinical efficacy as monotherapy and combination therapy. J Leukoc Biol. 2019;106(5):1063–8. https://doi.org/10.1002/JLB.5RU0519-145R

58. Hasko G, Cronstein B. Regulation of inflammation by adenosine. Front Immunol. 2013;4:85. https://doi.org/10.3389/fimmu.2013.00085

59. Friedman B, Cronstein B. Methotrexate mechanism in treatment of rheumatoid arthritis. Joint Bone Spine. 2019;86(3):301–7. https://doi.org/10.1016/j.jbspin.2018.07.004

60. Thomas S, Fisher KH, Snowden JA, Danson SJ, Brown S, Zeidler MP. Methotrexate is a JAK/STAT pathway inhibitor. PLoS One. 2015;10(7):e0130078. https://doi.org/10.1371/journal.pone.0130078

61. Chinnaiya K, Lawson MA, Thomas S, Haider MT, Down J, Chantry AD, et al. Low-dose methotrexate in myeloproliferative neoplasm models. Haematologica. 2017;102(9):e336–e9. https://doi.org/10.3324/haematol.2017.165738

62. Solipuram V, Mohan A, Patel R, Ni R. Effect of Janus kinase inhibitors and methotrexate combination on malignancy in patients with rheumatoid arthritis: a systematic review and meta-analysis of randomized controlled trials. Auto Immun Highlights. 2021;12(1):8. https://doi.org/10.1186/s13317-021-00153-5

63. Panja S, Khatua DK, Halder M. Simultaneous binding of folic acid and methotrexate to human serum albumin: insights into the structural changes of protein and the location and competitive displacement of drugs. ACS Omega. 2018;3(1):246–53. https://doi.org/10.1021/acsomega.7b01437

64. Liu Y, Zhou S, Nissel J, Wu A, Lau H, Palmisano M. The pharmacokinetic effect of coadministration of apremilast and methotrexate in individuals with rheumatoid arthritis and psoriatic arthritis. Clin Pharmacol Drug Dev. 2014;3(6):456–65. https://doi.org/10.1002/cpdd.109

65. Tanaka Y, Suzuki M, Nakamura H, Toyoizumi S, Zwillich SH, Tofacitinib Study I. Phase II study of tofacitinib (CP-690,550) combined with methotrexate in patients with rheumatoid arthritis and an inadequate response to methotrexate. Arthritis Care Res (Hoboken). 2011;63(8):1150–8. https://doi.org/10.1002/acr.20494

66. Payne C, Zhang X, Shahri N, Williams W, Cannady E. AB0492 Evaluation of potential drug–drug interactions with baricitinib. Annals of the Rheumatic Diseases. 2015;74(Suppl 2):1063. https://doi.org/10.1136/annrheumdis-2015-eular.1627

67. Hazlewood GS, Barnabe C, Tomlinson G, Marshall D, Devoe DJ, Bombardier C. Methotrexate monotherapy and methotrexate combination therapy with traditional and biologic disease modifying anti-rheumatic drugs for rheumatoid arthritis: a network meta-analysis. Cochrane Database Syst Rev. 2016;2016(8):CD010227. https://doi.org/10.1002/14651858.CD010227.pub2

68. Xu Z, Davis HM, Zhou H. Clinical impact of concomitant immunomodulators on biologic therapy: pharmacokinetics, immunogenicity, efficacy and safety. J Clin Pharmacol. 2015;55 Suppl 3:S60–74. https://doi.org/10.1002/jcph.380

69. Schaeverbeke T, Truchetet ME, Kostine M, Barnetche T, Bannwarth B, Richez C. Immunogenicity of biologic agents in rheumatoid arthritis patients: lessons for clinical practice. Rheumatology (Oxford). 2016;55(2):210–20. https://doi.org/10.1093/rheumatology/kev277

70. Iwaki M, Shimada H, Irino Y, Take M, Egashira S. Inhibition of methotrexate uptake via organic anion transporters OAT1 and OAT3 by glucuronides of nonsteroidal anti-inflammatory drugs. Biol Pharm Bull. 2017;40(6):926–31. https://doi.org/10.1248/bpb.b16-00970

71. Tracy TS, Krohn K, Jones DR, Bradley JD, Hall SD, Brater DC. The effects of a salicylate, ibuprofen, and naproxen on the disposition of methotrexate in patients with rheumatoid arthritis. Eur J Clin Pharmacol. 1992;42(2):121–5. https://doi.org/10.1007/BF00278469

72. Stewart CF, Fleming RA, Arkin CR, Evans WE. Coadministration of naproxen and low-dose methotrexate in patients with rheumatoid arthritis. Clin Pharmacol Ther. 1990;47(4):540–6. https://doi.org/10.1038/clpt.1990.69

73. Skeith KJ, Russell AS, Jamali F, Coates J, Friedman H. Lack of significant interaction between low dose methotrexate and ibuprofen or flurbiprofen in patients with arthritis. J Rheumatol. 1990;17(8):1008–10. PMID: 2213774

74. Combe B, Edno L, Lafforgue P, Bologna C, Bernard JC, Acquaviva P, et al. Total and free methotrexate pharmacokinetics, with and without piroxicam, in rheumatoid arthritis patients. Br J Rheumatol. 1995;34(5):421–8. https://doi.org/10.1093/rheumatology/34.5.421

75. Hubner G, Sander O, Degner FL, Turck D, Rau R. Lack of pharmacokinetic interaction of meloxicam with methotrexate in patients with rheumatoid arthritis. J Rheumatol. 1997;24(5):845–51. PMID: 9150070

76. Iqbal MP, Baig JA, Ali AA, Niazi SK, Mehboobali N, Hussain MA. The effects of non-steroidal anti-inflammatory drugs on the disposition of methotrexate in patients with rheumatoid arthritis. Biopharm Drug Dispos. 1998;19(3):163–7. https://doi.org/10.1002/(sici)1099-081x(199804)19:3<163::aid-bdd82>3.0.co;2-l

77. Karim A, Tolbert DS, Hunt TL, Hubbard RC, Harper KM, Geis GS. Celecoxib, a specific COX-2 inhibitor, has no significant effect on methotrexate pharmacokine tics in patients with rheumatoid arthritis. J Rheumatol. 1999;26(12):2539–43. PMID: 10606360

78. Hartmann SN, Rordorf CM, Milosavljev S, Branson JM, Chales GH, Juvin RR, et al. Lumiracoxib does not affect methotrexate pharmacokinetics in rheumatoid arthritis patients. Ann Pharmacother. 2004;38(10):1582–7. https://doi.org/10.1345/aph.1E044

79. Schwartz JI, Agrawal NG, Wong PH, Miller J, Bachmann K, Marbury T, ey al. Examination of the effect of increasing doses of etoricoxib on oral methotrexate pharmacokinetics in patients with rheumatoid arthritis. J Clin Pharmacol. 2009;49(10):1202–9. https://doi.org/10.1177/0091270009338939

80. Karateev AE, Ermakova YuA, Berezyuk AN, Solov’eva ES. Methotrexate and proton pump inhibitors: are there any negative pharmacologial effects? Rheumatology Science and Practice. 2013;51(6):662– 5 (In Russ.). https://doi.org/10.14412/1995-4484-2013-662-5

81. Joerger M, Huitema AD, van den Bongard HJ, Baas P, Schornagel JH, Schellens JH, Beijnen JH. Determinants of the elimination of methotrexate and 7-hydroxy-methotrexate following high-dose infusional therapy to cancer patients. Br J Clin Pharmacol. 2006;62(1):71–80. https://doi.org/10.1111/j.1365-2125.2005.02513.x

82. Vakily M, Amer F, Kukulka MJ, Andhivarothai N. Coadministration of lansoprazole and naproxen does not affect the pharmacokinetic profile of methotrexate in adult patients with rheumatoid arthritis. J Clin Pharmacol. 2005;45(10):1179–86. https://doi.org/10.1177/0091270005280100

83. Shimada T, Nishimura Y, Funada Y, Takenaka K, Kobayashi K, Urata Y, et al. [A case of Pneumocystis carinii pneumonia associated with low dose methotrexate treatment for rheumatoid arthritis and trimethoprim-sulphamethoxazole induced pancytopenia]. Arerugi. 2004;53(6):575–81. PMID: 15247519

84. Blum R, Seymour JF, Toner G. Significant impairment of high-dose methotrexate clearance following vancomycin administration in the absence of overt renal impairment. Ann Oncol. 2002;13(2):327–30. https://doi.org/10.1093/annonc/mdf021

85. Tobon GJ, Canas C, Jaller JJ, Restrepo JC, Anaya JM. Serious liver disease induced by infliximab. Clin Rheumatol. 2007;26(4):578–81. https://doi.org/10.1007/s10067-005-0169-y

86. Garces S, Demengeot J, Benito-Garcia E. The immunogenicity of anti-TNF therapy in immune-mediated inflammatory diseases: a systematic review of the literature with a meta-analysis. Ann Rheum Dis. 2013;72(12):1947–55. https://doi.org/10.1136/annrheumdis-2012-202220

87. Cohen S, Zwillich SH, Chow V, Labadie RR, Wilkinson B. Co-administration of the JAK inhibitor CP-690,550 and methotrexate is well tolerated in patients with rheumatoid arthritis without need for dose adjustment. Br J Clin Pharmacol. 2010;69(2):143–51. https://doi.org/10.1111/j.1365-2125.2009.03570.x

88. Zhu T, Moy S, Valluri U, Cao Y, Zhang W, Sawamoto T, et al. Investigation of potential drug–drug interactions between peficitinib (ASP015K) and methotrexate in patients with rheumatoid arthritis. Clin Drug Investig. 2020;40(9):827–38. https://doi.org/10.1007/s40261-020-00937-z

89. Gnjidic D, Le Couteur DG, Hilmer SN. Discontinuing drug treatments. BMJ. 2014;349:g7013. https://doi.org/10.1136/bmj.g7013

90. Akkara Veetil BM, Bongartz T. Perioperative care for patients with rheumatic diseases. Nat Rev Rheumatol. 2011;8(1):32–41. https://doi.org/10.1038/nrrheum.2011.171

91. Park JK, Kim MJ, Choi Y, Winthrop K, Song YW, Lee EB. Effect of short-term methotrexate discontinuation on rheumatoid arthritis disease activity: post-hoc analysis of two randomized trials. Clin Rheumatol. 2020;39(2):375–9. https://doi.org/10.1007/s10067-019-04857-y

92. Lee J, Singh N, Gray SL, Makris UE. Optimizing medication use in older adults with rheumatic musculoskeletal diseases: deprescribing as an approach when less may be more. ACR Open Rheumatol. 2022;4(12):1031–41. https://doi.org/10.1002/acr2.11503

93. Sychev DA, Ostroumova OD, Pereverzev AP, Kochetkov AI, Ostroumova TM, Klepikova MV, Ebzeeva EYu. Advanced age as a risk factor of drug-induced diseases. Safety and Risk of Pharmacotherapy. 2021;9(1):15–24 (In Russ.). https://doi.org/10.30895/2312-7821-2021-9-1-15-24

94. Garfinkel D, Mangin D. Feasibility study of a systematic approach for discontinuation of multiple medications in older adults: addressing polypharmacy. Arch Inter Med. 2010;170(18): 1648–54. https://doi.org/10.1001/archinternmed.2010.355

95. Park JK, Lee MA, Lee EY, Song YW, Choi Y, Winthrop KL, Lee EB. Effect of methotrexate discontinuation on efficacy of seasonal influenza vaccination in patients with rheumatoid arthritis: a randomised clinical trial. Ann Rheum Dis. 2017;76(9):1559–65. https://doi.org/10.1136/annrheumdis-2017-211128

96. Gridneva GI, Muravyev YuV, Luchikhina EL, Demidova NV, Karateev DE. Issues of optimization of methotrexate therapy in patients with rheumatoid arthritis. Rheumatology Science and Practice. 2017;55(1):41–7 (In Russ.). https://doi.org/10.14412/1995-4484-2017-41-47

97. Hu Q, Wang H, Xu T. Predicting hepatotoxicity associated with low-dose methotrexate using machine learning. J Clin Med. 2023;12(4):1599. https://doi.org/10.3390/jcm12041599

98. Samal L, Khasnabish S, Foskett C, Zigmont K, Faxvaag A, Chang F, et al. Comparison of a voluntary safety reporting system to a global trigger tool for identifying adverse events in an oncology population. J Patient Saf. 2022;18(6):611–6. https://doi.org/10.1097/PTS.0000000000001050


Supplementary files

Review

For citations:


Doktorova S.A., Grabovetskaya Yu.Yu., Stefanov M., Rafalskiy V.V. Enhancing the Efficacy and Safety of Methotrexate Treatment: A Focus on Drug Interactions (Review). Safety and Risk of Pharmacotherapy. 2024;12(3):285-298. (In Russ.) https://doi.org/10.30895/2312-7821-2024-416

Views: 1559


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2312-7821 (Print)
ISSN 2619-1164 (Online)