Preview

Safety and Risk of Pharmacotherapy

Advanced search

Anti-amyloid Monoclonal Antibodies for Alzheimer’s Disease: A New Hope? (Review)

https://doi.org/10.30895/2312-7821-2025-13-1-7-19

Abstract

INTRODUCTION. Alzheimer’s disease (AD), which becomes more prevalent with increasing life expectancy, is a leading cause of severe cognitive disorders and dementia. In 2021–2024, the Food and Drug Administration (FDA) approved the first disease-modifying therapies (DMTs) based on anti-amyloid monoclonal antibodies (­anti-Aβ mAbs), including aducanumab (accelerated approval), lecanemab, and donanemab. Ongoing studies are evaluating the efficacy and safety of these anti-Aβ mAbs.

AIM. This review aimed to examine the prospects and limitations of anti-amyloid DMTs for AD in the context of the current understanding of AD pathogenesis mechanisms.

DISCUSSION. According to current concepts, the pathogenesis of AD is primarily driven by the aggregation of amyloid plaques and neurofibrillary tangles of hyperphosphorylated tau protein in the brain, which is accompanied by neurodegenerative changes. The pathogenesis of AD is still being studied. The mechanism of action of FDA-approved anti-Aβ mAbs for the treatment of AD (aducanumab, lecanemab, and donanemab) involves microglial activation followed by amyloid phagocytosis and degradation. The mAbs differ in their affinity to different ­amyloid species. Clinical trials (average duration: 1.5 years) have demonstrated that all 3 anti-Aβ mAbs reliably and significantly reduce the brain amyloid burden (up to complete amyloid clearance with donanemab) and slow down cognitive decline in patients with early-stage AD. Although reliable, the reduction in cognitive decline rates is of limited clinical significance. The most common adverse event of mAb therapy is amyloid-associated imaging abnormalities (ARIA) observed in 20–30% of patients. This complication is a result of amyloid clearance and typically occurs early in the course of treatment. APOE ε4 allele carriers have a higher incidence of ARIA than non-carriers. Most reported cases of ARIA were asymptomatic and resolved over time.

CONCLUSIONS. Anti-Aβ mAbs have shown reliable efficacy in reducing the brain amyloid burden and slowing the progression of cognitive decline in AD. However, the widespread use of anti-Aβ mAbs has been hampered by their limited clinical efficacy, invasiveness of diagnosis, high diagnostic and treatment costs, and additional expenses associated with adverse event monitoring.

About the Author

I. A. Mazerkina
Scientific Centre for Expert Evaluation of Medicinal Products
Russian Federation

Irina A. Mazerkina, Cand. Sci. (Med.)

8/2 Petrovsky Blvd, Moscow 127051



References

1. Chen S, Cao Z, Nandi A, Counts N, Jiao L, Prettner K, Kuhn M, Seligman B, Tortorice D, Vigo D, Wang C, Bloom DE. The global macroeconomic burden of Alzheimer's disease and other dementias: estimates and projections for 152 countries or territories. Lancet Glob Health. 2024 Sep;12(9):e1534-e1543. doi: 10.1016/S2214-109X(24)00264-X.

2. Клинические рекомендации Когнитивные расстройства у лиц пожилого и старческого возраста (одобрены Минздравом России). Общероссийская общественная организация «Российская ассоциация геронтологов и гериатров»; Общественная организация «Российское общество психиатров» Год утверждения: 2020

3. Tiwari S, Atluri V, Kaushik A, Yndart A, Nair M. Alzheimer's disease: pathogenesis, diagnostics, and therapeutics. Int J Nanomedicine. 2019 Jul 19;14:5541-5554. doi: 10.2147/IJN.S200490.

4. Cummings J, Zhou Y, Lee G, Zhong K, Fonseca J, Cheng F. Alzheimer's disease drug development pipeline: 2023. Alzheimers Dement (N Y). 2023 May 25;9(2):e12385. doi: 10.1002/trc2.12385.

5. Hardy, J.A., and Higgins, G.A. (1992). Alzheimer’s disease: the amyloid cascade hypothesis. Science 256, 184–185

6. Selkoe DJ, Hardy J. The amyloid hypothesis of Alzheimer's disease at 25 years. EMBO Mol Med. 2016 Jun 01;8:595. doi: 10.15252/emmm.201606210.

7. Aschenbrenner AJ, Gordon BA, Benzinger TLS, Morris JC, Hassenstab JJ. Influence of tau PET, amyloid PET, and hippocampal volume on cognition in Alzheimer disease. Neurology. 2018 Aug 28;91(9):e859-e866. doi: 10.1212/WNL.0000000000006075.

8. Hanseeuw BJ, Betensky RA, Jacobs HIL, Schultz AP, Sepulcre J, Becker JA, Cosio DMO, Farrell M, Quiroz YT, Mormino EC, Buckley RF, Papp KV, Amariglio RA, Dewachter I, Ivanoiu A, Huijbers W, Hedden T, Marshall GA, Chhatwal JP, Rentz DM, Sperling RA, Johnson K. Association of Amyloid and Tau With Cognition in Preclinical Alzheimer Disease: A Longitudinal Study. JAMA Neurol. 2019 Aug 1;76(8):915-924. doi: 10.1001/jamaneurol.2019.1424.

9. Park S, Lee JH, Jeon JH, Lee MJ. Degradation or aggregation: the ramifications of post-translational modifications on tau. BMB Rep. 2018 Jun;51(6):265-273. doi: 10.5483/bmbrep.2018.51.6.077. Erratum in: BMB Rep. 2020 Jul;53(7):391. PMID: 29661268; PMCID: PMC6033068.

10. Mawuenyega KG, Sigurdson W, Ovod V, Munsell L, Kasten T, Morris JC, et al. Decreased clearance of CNS beta-amyloid in Alzheimer’s disease. Science. 2010;330:1774.

11. Haass C, Kaether C, Thinakaran G, Sisodia S. Trafficking and proteolytic processing of APP. Cold Spring Harb Perspect Med. 2012 May;2(5):a006270. doi: 10.1101/cshperspect.a006270. PMID: 22553493; PMCID: PMC3331683.

12. Liu L, Ding L, Rovere M, Wolfe MS, Selkoe DJ. A cellular complex of BACE1 and γ-secretase sequentially generates Aβ from its full-length precursor. J Cell Biol. 2019 Feb 4;218(2):644-663. doi: 10.1083/jcb.201806205. Epub 2019 Jan 9. PMID: 30626721; PMCID: PMC6363461.

13. Gremer L, Schölzel D, Schenk C, Reinartz E, Labahn J, Ravelli RBG, Tusche M, Lopez-Iglesias C, Hoyer W, Heise H, Willbold D, Schröder GF. Fibril structure of amyloid-β(1-42) by cryo-electron microscopy. Science. 2017 Oct 6;358(6359):116-119. doi: 10.1126/science.aao2825.

14. Iwatsubo T, et al. Visualization of A beta 42(43) and A beta 40 in senile plaques with end-specific A beta monoclonals: evidence that an initially deposited species is A beta 42(43). Neuron. 1994;13(1):45–53.

15. O'Brien RJ, Wong PC. Amyloid Precursor Protein Processing and Alzheimer’s Disease. Annu Rev Neurosci. 2011;34:185–204.

16. Ludewig S, Korte M. Novel insights into the physiological function of the APP (gene) family and its proteolytic fragments in synaptic plasticity. Front Mol Neurosci. 2016;9:161.

17. Rice HC, de Malmazet D, Schreurs A, Frere S, Van Molle I, Volkov AN, et al.Secreted amyloid-β precursor protein functions as a GABA(B)R1a ligand to modulate synaptic transmission. Science. 2019;363:eaao4827

18. Tackenberg C, Nitsch RM. The secreted APP ectodomain sAPPalpha, but not sAPPbeta, protects neurons against Abeta oligomer-induced dendritic spine loss and increased tau phosphorylation. Mol Brain. 2019;12(1):27.

19. Ring S, et al. The secreted beta-amyloid precursor protein ectodomain APPs alpha is sufficient to rescue the anatomical, behavioral, and electrophysiological abnormalities of APP-deficient mice. J Neurosci. 2007; 27(29):7817–26

20. Nikolaev A, et al. APP binds DR6 to trigger axon pruning and neuron death via distinct caspases. Nature. 2009;457(7232):981–9.

21. Sekine-Aizawa Y, et al. Matrix metalloproteinase (MMP) system in brain: identification and characterization of brain-specific MMP highly expressed in cerebellum. Eur J Neurosci. 2001;13(5):935–48.

22. Willem M, et al. Eta-secretase processing of APP inhibits neuronal activity in the hippocampus. Nature. 2015;526(7573):443–7.

23. Lanoiselee HM, et al. APP, PSEN1, and PSEN2 mutations in early-onset Alzheimer disease: A genetic screening study of familial and sporadic cases. PLoS Med. 2017;14(3):e1002270.

24. Haass C, et al. The Swedish mutation causes early-onset Alzheimer’s disease by beta-secretase cleavage within the secretory pathway. Nat Med. 1995; 1(12):1291–6.

25. Hooli BV, Mohapatra G, Mattheisen M, Parrado AR, Roehr JT, Shen Y, et al. Role of common and rare APP DNA sequence variants in Alzheimer disease. Neurology. 2012;78:1250–7.

26. Di Fede G, Di Catania M, Morbin M, Giaccone G, Moro ML, Ghidoni R, et al. Good gene, bad gene: new APP variant may be both. Prog Neurobiol. 2012;99:281–92.

27. Jonsson T, Atwal J, Steinberg S et al. A mutation in APP protects against Alzheimer’s disease and age-related cognitive decline. Nature. 2012; 488: 96–9. https://doi.org/10.1038/nature11283

28. Eggert S, et al. Trafficking in Alzheimer’s disease: modulation of APP transport and processing by the transmembrane proteins LRP1, SorLA, SorCS1c, Sortilin, and Calsyntenin. Mol Neurobiol. 2018;55(7):5809–29.

29. Huang TY, et al. SNX27 and SORLA interact to reduce Amyloidogenic subcellular distribution and processing of amyloid precursor protein. J Neurosci. 2016;36(30):7996–8011

30. Kim W, et al. BACE1 elevation engendered by GGA3 deletion increases betaamyloid pathology in association with APP elevation and decreased CHL1 processing in 5XFAD mice. Mol Neurodegener. 2018;13(1):6.

31. Kang EL, et al. Ubiquitin regulates GGA3-mediated degradation of BACE1. J Biol Chem. 2010;285(31):24108–19.

32. Guo, T., Zhang, D., Zeng, Y. et al. Molecular and cellular mechanisms underlying the pathogenesis of Alzheimer’s disease. Mol Neurodegeneration 15, 40 (2020). https://doi.org/10.1186/s13024-020-00391-7

33. Guo X, Shi D, Liu J, Ning Z, Zhang Y, Liu M, Wei Y. Mitochondrial autophagy in Alzheimer's disease. Panminerva Med. 2024 Jun 11. doi: 10.23736/S0031-0808.24.05183-8. Epub ahead of print. PMID: 38864096

34. Kadavath H, et al. Tau stabilizes microtubules by binding at the interface between tubulin heterodimers. Proc Natl Acad Sci U S A. 2015;112(24): 7501–6.

35. Hong, X. P. et al. Essential role of tau phosphorylation in adult hippocampal neurogenesis. Hippocampus 20, 1339–1349 (2010).

36. Lei, P. et al. Tau deficiency induces parkinsonism with dementia by impairing APP-mediated iron export. Nat. Med. 18, 291–295 (2012).

37. Kimura, T. et al. Microtubule-associated protein tau is essential for long-term depression in the hippocampus. Phil. Trans. R. Soc. B 369, 20130144 (2014).

38. Kalyaanamoorthy S, Opare SK, Xu X, Ganesan A, Rao PPN. Post-Translational Modifications in Tau and Their Roles in Alzheimer's Pathology. Curr Alzheimer Res. 2024;21(1):24-49. doi: 10.2174/0115672050301407240408033046. PMID: 38623984.

39. Iqbal K, Liu F, Gong CX, Alonso Adel C, Grundke-Iqbal I. Mechanisms of tau-induced neurodegeneration. Acta Neuropathol. 2009;118(1):53–69. doi: 10.1007/s00401-009-0486-3.

40. Liu F, Iqbal K, Grundke-Iqbal I, Rossie S, Gong CX. Dephosphorylation of tau by protein phosphatase 5: impairment in Alzheimer’s disease. J Biol Chem. 2005;280(3):1790–1796. doi: 10.1074/jbc.M410775200.

41. Maitra S, Vincent B. Cdk5-p25 as a key element linking amyloid and tau pathologies in Alzheimer's disease: Mechanisms and possible therapeutic interventions. Life Sci. 2022 Nov 1;308:120986. doi: 10.1016/j.lfs.2022.120986. Epub 2022 Sep 21. PMID: 36152679.

42. Tapia-Rojas C, Cabezas-Opazo F, Deaton CA, Vergara EH, Johnson GVW, Quintanilla RA. It's all about tau. Prog Neurobiol. 2019 Apr;175:54-76. doi: 10.1016/j.pneurobio.2018.12.005. Epub 2018 Dec 31. PMID: 30605723; PMCID: PMC6397676.

43. Ginsberg SD, et al. Shift in the ratio of three-repeat tau and four-repeat tau mRNAs in individual cholinergic basal forebrain neurons in mild cognitive impairment and Alzheimer’s disease. J Neurochem. 2006;96(5):1401–8

44. Wegmann S, et al. Tau protein liquid-liquid phase separation can initiate tau aggregation. EMBO J. 2018:37(7):e98049

45. DeVos, S.L., Corjuc, B.T., Oakley, D.H., Nobuhara, C.K., Bannon, R.N., Chase, A., Commins, C., Gonzalez, J.A., Dooley, P.M., Frosch, M.P., and Hyman, B.T. (2018). Synaptic Tau Seeding Precedes Tau Pathology in Human Alzheimer’s Disease Brain. Front. Neurosci. 12, 267.

46. Bloom GS. Amyloid-β and tau: the trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurol. 2014 Apr;71(4):505-8. doi: 10.1001/jamaneurol.2013.5847. PMID: 24493463.

47. Sebastián-Serrano Á, de Diego-García L, Díaz-Hernández M. The Neurotoxic Role of Extracellular Tau Protein. Int J Mol Sci. 2018 Mar 27;19(4):998. doi: 10.3390/ijms19040998. PMID: 29584657; PMCID: PMC5979432.

48. Roses, A.D. (1996). Apolipoprotein E alleles as risk factors in Alzheimer’s disease. Annu. Rev. Med. 47, 387–400.

49. Bussy, A., Snider, B.J., Coble, D., Xiong, C., Fagan, A.M., Cruchaga, C., Benzinger, T.L.S., Gordon, B.A., Hassenstab, J., Bateman, R.J., and Morris, J.C.; Dominantly Inherited Alzheimer Network (2019). Effect of apolipoprotein E4 on clinical, neuroimaging, and biomarker measures in noncarrier participants in the Dominantly Inherited Alzheimer Network. Neurobiol. Aging 75, 42–50.

50. Ulrich JD, Ulland TK, Mahan TE, Nyström S, Nilsson KP, Song WM, Zhou Y, Reinartz M, Choi S, Jiang H, Stewart FR, Anderson E, Wang Y, Colonna M, Holtzman DM. ApoE facilitates the microglial response to amyloid plaque pathology. J Exp Med. 2018 Apr 2;215(4):1047-1058. doi: 10.1084/jem.20171265.

51. Shi Y, Holtzman DM. Interplay between innate immunity and Alzheimer disease: APOE and TREM2 in the spotlight. Nat Rev Immunol. 2018 Dec;18(12):759-772. doi: 10.1038/s41577-018-0051-1. PMID: 30140051; PMCID: PMC6425488.

52. Najm, R., Jones, E.A., and Huang, Y. (2019). Apolipoprotein E4, inhibitory network dysfunction, and Alzheimer’s disease. Mol. Neurodegener. 14, 24.

53. Almeida PGC, Nani JV, Oses JP, Brietzke E, Hayashi MAF. Neuroinflammation and glial cell activation in mental disorders. Brain Behav Immun Health. 2019 Dec 27;2:100034. doi: 10.1016/j.bbih.2019.100034. PMID: 38377429; PMCID: PMC8474594.

54. Deczkowska A, Keren-Shaul H, Weiner A, Colonna M, Schwartz M, Amit I. Disease-Associated Microglia: A Universal Immune Sensor of Neurodegeneration. Cell. 2018 May 17;173(5):1073-1081. doi: 10.1016/j.cell.2018.05.003. PMID: 29775591.

55. Buccellato FR, D'Anca M, Serpente M, Arighi A, Galimberti D. The Role of Glymphatic System in Alzheimer's and Parkinson's Disease Pathogenesis. Biomedicines. 2022 Sep 13;10(9):2261. doi: 10.3390/biomedicines10092261.

56. Hablitz, L.M.; Plá, V.; Giannetto, M.; Vinitsky, H.S.; Stæger, F.F.; Metcalfe, T.; Nguyen, R.; Benrais, A.; Nedergaard, M. Circadian control of brain glymphatic and lymphatic fluid flow. Nat. Commun. 2020, 11, 4411.

57. Louveau, A.; Plog, B.A.; Antila, S.; Alitalo, K.; Nedergaard, M.; Kipnis, J. Understanding the functions and relationships of the glymphatic system and meningeal lymphatics. J. Clin. Investig. 2017, 127, 3210–3219. [CrossRef]

58. Schubert JJ, Veronese M, Marchitelli L, Bodini B, Tonietto M, Stankoff B, Brooks DJ, Bertoldo A, Edison P, Turkheimer FE. Dynamic 11C-PiB PET Shows Cerebrospinal Fluid Flow Alterations in Alzheimer Disease and Multiple Sclerosis. J Nucl Med. 2019 Oct;60(10):1452-1460. doi: 10.2967/jnumed.118.223834. Epub 2019 Mar 8. PMID: 30850505; PMCID: PMC6785797.

59. Zhang X, Wang Y, Jiao B, Wang Z, Shi J, Zhang Y, Bai X, Li Z, Li S, Bai R, Sui B. Glymphatic system impairment in Alzheimer's disease: associations with perivascular space volume and cognitive function. Eur Radiol. 2024 Feb;34(2):1314-1323. doi: 10.1007/s00330-023-10122-3. Epub 2023 Aug 23. PMID: 37610441.

60. Cummings J. The National Institute on Aging-Alzheimer's Association Framework on Alzheimer's disease: Application to clinical trials. Alzheimers Dement. 2019 Jan;15(1):172-178. doi: 10.1016/j.jalz.2018.05.006.

61. Janelidze S, Mattsson N, Palmqvist S, et al. Plasma P-tau181 in Alzheimer’s disease: relationship to other biomarkers, differential diagnosis, neuropathology and longitudinal progression to Alzheimer’s dementia. Nat Med. 2020;26(3):379-386. https://doi.org/10.1038/ s41591-020-0755-1

62. Lantero Rodriguez J, Karikari TK, Suarez-Calvet M, et al. Plasma ptau181 accurately predicts Alzheimer’s disease pathology at least 8 years prior to post-mortem and improves the clinical characterisation of cognitive decline. Acta Neuropathol. 2020;140(3):267-278. https:// doi.org/10.1007/s00401-020-02195-x

63. Palmqvist S, Janelidze S, Quiroz YT, et al. Discriminative accuracy of plasma phospho-tau217 for Alzheimer disease vs other neurodegenerative disorders. JAMA. 2020;324(8):772-781. https://doi.org/10. 1001/jama.2020.12134

64. Thijssen EH, La Joie R, Wolf A, et al. Diagnostic value of plasma phosphorylated tau181 in Alzheimer’s disease and frontotemporal lobar degeneration.Nat Med. 2020;26(3):387-397. https://doi.org/10.1038/ s41591-020-0762-2

65. Ashton NJ, Pascoal TA, Karikari TK, et al. Plasma p-tau231: a new biomarker for incipient Alzheimer’s disease pathology. Acta Neuropathol. 2021;141(5):709-724. https://doi.org/10.1007/s00401- 021-02275-6

66. Mielke MM, Hagen CE, Xu J, et al. Plasma phospho-tau181 increases with Alzheimer’s disease clinical severity and is associated with tau- and amyloid-positron emission tomography. Alzheimers Dement. 2018;14(8):989-997. https://doi.org/10.1016/j.jalz.2018.02.013

67. Hansson O, Edelmayer RM, Boxer AL, Carrillo MC, Mielke MM, Rabinovici GD, Salloway S, Sperling R, Zetterberg H, Teunissen CE. The Alzheimer's Association appropriate use recommendations for blood biomarkers in Alzheimer's disease. Alzheimers Dement. 2022 Dec;18(12):2669-2686. doi: 10.1002/alz.12756.

68. Söderberg L, Johannesson M, Nygren P, Laudon H, Eriksson F, Osswald G, Möller C, Lannfelt L. Lecanemab, Aducanumab, and Gantenerumab - Binding Profiles to Different Forms of Amyloid-Beta Might Explain Efficacy and Side Effects in Clinical Trials for Alzheimer's Disease. Neurotherapeutics. 2023 Jan;20(1):195-206. doi: 10.1007/s13311-022-01308-6. Epub 2022 Oct 17. PMID: 36253511; PMCID: PMC10119362..

69. Budd Haeberlein S, Aisen PS, Barkhof F, Chalkias S, Chen T, Cohen S, Dent G, Hansson O, Harrison K, von Hehn C, Iwatsubo T, Mallinckrodt C, Mummery CJ, Muralidharan KK, Nestorov I, Nisenbaum L, Rajagovindan R, Skordos L, Tian Y, van Dyck CH, Vellas B, Wu S, Zhu Y, Sandrock A. Two Randomized Phase 3 Studies of Aducanumab in Early Alzheimer's Disease. J Prev Alzheimers Dis. 2022;9(2):197-210. doi: 10.14283/jpad.2022.30. PMID: 35542991.

70. Budd Haeberlein S, Aisen PS, Barkhof F, Chalkias S, Chen T, Cohen S, et al. Two randomized phase 3 studies of aducanumab in early Alzheimer’s disease. J Prev Alzheimers Dis. 2022;9(2):197–210.

71. Sevigny J, Chiao P, Bussiere T, Weinreb PH, Williams L, Maier M, et al. The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature. 2016;537(7618):50–6.

72. van Dyck CH, Swanson CJ, Aisen P, Bateman RJ, Chen C, Gee M, Kanekiyo M, Li D, Reyderman L, Cohen S, Froelich L, Katayama S, Sabbagh M, Vellas B, Watson D, Dhadda S, Irizarry M, Kramer LD, Iwatsubo T. Lecanemab in Early Alzheimer's Disease. N Engl J Med. 2023 Jan 5;388(1):9-21. doi: 10.1056/NEJMoa2212948. Epub 2022 Nov 29. PMID: 36449413.

73. Mintun, M.A.; Lo, A.C.; Duggan Evans, C.; Wessels, A.M.; Ardayfio, P.A.; Andersen, S.W.; Shcherbinin, S.; Sparks, J.; Sims, J.R.; Brys, M.; et al. Donanemab in Early Alzheimer’s Disease. N. Engl. J. Med. 2021, 384, 1691–1704. [

74. Sims JR, Zimmer JA, Evans CD, Lu M, Ardayfio P, Sparks J, Wessels AM, Shcherbinin S, Wang H, Monkul Nery ES, Collins EC, Solomon P, Salloway S, Apostolova LG, Hansson O, Ritchie C, Brooks DA, Mintun M, Skovronsky DM; TRAILBLAZER-ALZ 2 Investigators. Donanemab in Early Symptomatic Alzheimer Disease: The TRAILBLAZER-ALZ 2 Randomized Clinical Trial. JAMA. 2023 Aug 8;330(6):512-527. doi: 10.1001/jama.2023.13239. PMID: 37459141; PMCID: PMC10352931.

75. Dickson SP, Wessels AM, Dowsett SA, Mallinckrodt C, Sparks JD, Chatterjee S, et al. ‘Time saved’ as a demonstration of clinical meaningfulness and illustrated using the donanemab TRAILBLAZER-ALZ study findings. J Prev Alzheimers Dis. 2023;10(3):595–9.

76. Sperling R, Salloway S, Brooks DJ, et al. Amyloid-related imaging abnormalities (ARIA) in Alzheimer’s disease patients treated with bapineuzumab: A retrospective analysis. Lancet Neurol. 2012;11:241-249. Carlson C, Siemers E, Hake A, et al. Amyloid-related imaging abnormalities from trials of solanezumab for Alzheimer’s disease. Alzheimers Dement (Amst). 2016;2:75-85.

77. Vernooij MW, van der Lugt A, Ikram MA, et al. Prevalence and risk factors of cerebral microbleeds: The Rotterdam Scan Study. Neurology. 2008;70:1208-1214. Atri A, Locascio JJ, Lin JM, et al. Prevalence and effects of lobar microhemorrhages in early-stage dementia. Neurodegener Dis. 2005;2:305-312

78. Filippi M, Cecchetti G, Spinelli EG, Vezzulli P, Falini A, Agosta F. Amyloid-Related Imaging Abnormalities and β-Amyloid-Targeting Antibodies: A Systematic Review. JAMA Neurol. 2022 Mar 1;79(3):291-304. doi: 10.1001/jamaneurol.2021.5205. PMID: 35099507

79. Budd Haeberlein, S.; Aisen, P.S.; Barkhof, F.; Chalkias, S.; Chen, T.; Cohen, S.; Dent, G.; Hansson, O.; Harrison, K.; von Hehn, C.; et al. Two Randomized Phase 3 Studies of Aducanumab in Early Alzheimer’s Disease. J. Prev. Alzheimer’s Dis. 2022, 9, 197–210

80. Honig LS, Sabbagh MN, van Dyck CH, Sperling RA, Hersch S, Matta A, Giorgi L, Gee M, Kanekiyo M, Li D, Purcell D, Dhadda S, Irizarry M, Kramer L. Updated safety results from phase 3 lecanemab study in early Alzheimer's disease. Alzheimers Res Ther. 2024 May 10;16(1):105. doi: 10.1186/s13195-024-01441-8.

81. Sinha P, Barocas JA. Cost-effectiveness of aducanumab to prevent Alzheimer's disease progression at current list price. Alzheimers Dement (N Y). 2022 Mar 7;8(1):e12256. doi: 10.1002/trc2.12256. PMID: 35282659; PMCID: PMC8900580.

82. Arbanas JC, Damberg CL, Leng M, Harawa N, Sarkisian CA, Landon BE, Mafi JN. Estimated Annual Spending on Lecanemab and Its Ancillary Costs in the US Medicare Program. JAMA Intern Med. 2023 Aug 1;183(8):885-889. doi: 10.1001/jamainternmed.2023.1749. PMID: 37167598; PMCID: PMC10176174.

83. Boess F, Sakaoka S, Abi-Saab D, Scelsi M, Delmar P, Hofmann C, Klein G, et al. Graduation study design: evaluation of once-weekly subcutaneous administration of gantenerumab on brain amyloid load. Alzheimer’s Dementia. 2021;17(S9): e052060. https://doi.org/10.1002/alz.052060

84. Cummings J, Zhou Y, Lee G, Zhong K, Fonseca J, Cheng F. Alzheimer's disease drug development pipeline: 2023. Alzheimers Dement (N Y). 2023 May 25;9(2):e12385. doi: 10.1002/trc2.12385. Erratum in: Alzheimers Dement (N Y). 2023 Jun 28;9(2):e12407. doi: 10.1002/trc2.12407. PMID: 37251912; PMCID: PMC10210334.

85. Lansdall, C. J. et al. Establishing clinically meaningful change on outcome assessments frequently used in trials of mild cognitive impairment due to Alzheimer’s disease. J. Prev. Alzheimers Dis.10, 9–18. https://doi.org/10.14283/jpad.2022.102 (2023)


Review

For citations:


Mazerkina I.A. Anti-amyloid Monoclonal Antibodies for Alzheimer’s Disease: A New Hope? (Review). Safety and Risk of Pharmacotherapy. 2025;13(1):7-19. (In Russ.) https://doi.org/10.30895/2312-7821-2025-13-1-7-19

Views: 950


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2312-7821 (Print)
ISSN 2619-1164 (Online)