Fatal Rhabdomyolysis after Rosuvastatin Dose Modification in Acute Coronary Syndrome: A Case Report
https://doi.org/10.30895/2312-7821-2025-13-3-333-343
Abstract
INTRODUCTION. Following acute coronary syndrome (ACS), patients are at high risk of repeated cardiovascular accidents. They receive intensive lipid-lowering and antiplatelet therapy according to clinical recommendations. However, therapy intensification may entail increased risks of adverse drug reactions. The clinical case describes fatal rhabdomyolysis associated with high-dose rosuvastatin therapy. The risk factors of this adverse reaction have been analysed; knowing the factors can help prevent similar events in patients.
CASE REPORT. A 68-year-old patient, male, received continuous therapy with rosuvastatin 10 mg per day for 3 years with good tolerability. After the ACS, rosuvastatin dose was increased to a maximum of 40 mg per day, dual antiplatelet therapy with ticagrelor was prescribed, as well as bisoprolol, amlodipine, omeprazole, perindopril, and spironolactone. Within a month, the patient developed muscle pain and acute renal failure, with clinical and laboratory evidence confirming rhabdomyolysis. Despite intensive therapy, the patient died. An analysis was performed for genetic markers of individual rosuvastatin pharmacokinetics, showing: CYP2C9 *1*1 (normal activity), SLCO1B1 *5*15 (reduced activity for homozygous state), ABCG2 c.421 C/C (normal activity). Literature analysis of drug interaction revealed possible additional increase in rosuvastatin concentrations (up to 2.6 times) associated with ticagrelor inhibiting breast cancer resistant protein transporter activity.
CONCLUSIONS. In the present case, fatal statin-associated rhabdomyolysis developed due to two significant factors — pharmacogenetic predisposition and a significant drug-drug interaction of rosuvastatin with ticagrelor, which disrupted the functions of two carrier proteins that determine medicine bioavailability (breast cancer resistant protein) and its transport through the hepatocyte membrane (OATPB1). Pharmacogenetic testing and active monitoring of laboratory values is indicated in such patients in the first days of drug therapy for the timely diagnosis of possible complications; such situations are crucial for the prognosis in patients after ACS following high-dose statin therapy and other medicines with the potential for significant drug interactions.
About the Authors
T. A. MakarovaRussian Federation
Taiana A. Makarova
2 Akkuratov St., St. Petersburg 197341
K. A. Zagorodnikova
Russian Federation
Ksenia A. Zagorodnikova, Cand. Sci. (Med.)
2 Akkuratov St., St. Petersburg 197341
I. A. Makarov
Russian Federation
Igor A. Makarov, Cand. Sci. (Med.)
2 Akkuratov St., St. Petersburg 197341
N. V. Dobrynina
Russian Federation
Nonna V. Dobrynina
2 Akkuratov St., St. Petersburg 197341
E. E. Sventitskaya
Russian Federation
Ekaterina E. Sventitskaya
2 Akkuratov St., St. Petersburg 197341
Yu. N. Lobacheva
Russian Federation
Yuliia N. Lobacheva
2 Akkuratov St., St. Petersburg 197341
References
1. Collins R, Reith C, Emberson J, et al. Interpretation of the evidence for the efficacy and safety of statin therapy. Lancet. 2017;389(10069):602. https://doi.org/10.1016/S0140-6736(16)31468-4
2. Rosa GM, Carbone F, Parodi A, et al. Update on the efficacy of statin treatment in acute coronary syndromes. Eur J Clin Invest. 2014;44(5):501–15. https://doi.org/10.1111/eci.12255
3. Byrne RA, Rossello X, Coughlan JJ, et al. 2023 ESC Guidelines for the management of acute coronary syndromes. Eur Heart J. 2024;45(13):1145. https://doi.org/10.1093/eurheartj/ehad870
4. Aronow HD, Topol EJ, Roe MT, et al. Effect of lipid-lowering therapy on early mortality after acute coronary syndromes: An observational study. Lancet. 2001;357(9262):1063–8. https://doi.org/10.1016/S0140-6736(00)04257-4
5. Sposito AC, Chapman MJ. Statin therapy in acute coronary syndromes: mechanistic insight into clinical benefit. Arterioscler Thromb Vasc Biol. 2002;22(10):1524–34. https://doi.org/10.1161/01.atv.0000032033.39301.6a
6. Yu S, Jin J, Chen Z, Luo X. High-intensity statin therapy yields better outcomes in acute coronary syndrome patients: A meta-analysis involving 26,497 patients. Lipids Health Dis. 2020;19(1):194. https://doi.org/10.1186/s12944-020-01369-6
7. Byrne RA, Rossello X, Coughlan JJ, et al., 2023 ESC Guidelines for the management of acute coronary syndromes: Developed by the task force on the management of acute coronary syndromes of the European Society of Cardiology (ESC). European Heart Journal. 2023;44(38):3720–826. https://doi.org/10.1093/eurheartj/ehad19
8. Gulizia MM, Colivicchi F, Arca M, et al. ANMCO Position Paper: Diagnostic-therapeutic pathway in patients with hypercholesterolaemia and statin intolerance. Eur Heart J Suppl. 2017;19(Suppl D):D55–D63. https://doi.org/10.1093/eurheartj/sux020
9. Schech S, Graham D, Staffa J, et al. Risk factors for statin-associated rhabdomyolysis. Pharmacoepidemiol Drug Saf. 2007;16(3):352–8. https://doi.org/10.1002/pds.1287
10. Morris R, Bu K, Han W, et al. The association between statin drugs and rhabdomyolysis: An analysis of FDA Adverse Event Reporting System (FAERS) data and transcriptomic profiles. Genes. 2025;16(3):248. https://doi.org/10.3390/genes16030248
11. Lim AK. Abnormal liver function tests associated with severe rhabdomyolysis. World J Gastroenterol. 2020;26(10):1020–8. https://doi.org/10.3748/wjg.v26.i10.1020
12. Cabral BMI, Edding SN, Portocarrero JP, Lerma EV. Rhabdomyolysis. Dis Mon. 2020;66(8):101015. https://doi.org/10.1016/j.disamonth.2020.101015
13. Hohenegger M. Drug induced rhabdomyolysis. Curr Opin Pharmacol. 2012;12(3):335–9. https://doi.org/10.1016/j.coph.2012.04.002
14. Cholesterol Treatment Trialists’ (CTT) Collaboration; Baigent C, Blackwell L, Emberson J, et al. Efficacy and safety of more intensive lowering of LDL cholesterol: A meta-analysis of data from 170000 participants in 26 randomised trials. Lancet. 2010;376(9753):1670–81. https://doi.org/10.1016/S0140-6736(10)61350-5
15. Hassan M, Nguyen B, Helmsdoerfer K, et al. High-intensity statin with severe consequences: A case of non-autoimmune rosuvastatin-induced myonecrosis. Cureus. 2022;14(10):e30080. https://doi.org/10.7759/cureus.30080
16. Sychev DA, Ostroumova TM, Ostroumova OD, et al. Statin-induced myopathy. Safety and Risk of Pharmacotherapy. 2023;11(3):252–70 (In Russ.). https://doi.org/10.30895/2312-7821-2023-11-3-252-270
17. Sumarokov AB, Ezhov MV. Diagnosis and treatment of statin-induced necrotizing autoimmune myopathy. Clin Pharmacol Ther. 2022;31(2):76–80 (In Russ.). https://doi.org/10.32756/0869-5490-2022-2-76-80
18. Liu HC, Goldenberg A, Chen Y, et al. Molecular properties of drugs interacting with SLC22 transporters OAT1, OAT3, OCT1, and OCT2: A machine-learning approach. J Pharmacol Exp Ther. 2016;359(1):215–29. https://doi.org/10.1124/jpet.116.232660
19. Bailey KM, Romaine SP, Jackson BM, et al. Hepatic metabolism and transporter gene variants enhance response to rosuvastatin in patients with acute myocardial infarction: The GEOSTAT-1 study. Circ Cardiovasc Genet. 2010;3(3):276–85. https://doi.org/10.1161/CIRCGENETICS.109.89850
20. Roule V, Alexandre J, Lemaitre A, et al. Rhabdomyolysis with co-administration of statins and antiplatelet therapies-analysis of the WHO pharmacovigilance database. Cardiovasc Drugs Ther. 2024;38(6):1191–9. https://doi.org/10.1007/s10557-023-07459-8
21. Patel R, Sharma JB, Rajput S. Statins ticagrelor and rhabdomyolysis: A coincidence or a drug interaction? J Lipid Atheroscler. 2024;13(1):61–8. https://doi.org/10.12997/jla.2024.13.1.61
22. Rocca B, Bigagli E, Cerbai E. Ticagrelor and statins: Dangerous liaisons? Cardiovasc Drugs Ther. 2024;38(6):1103–9. https://doi.org/10.1007/s10557-024-07624-7
23. Lehtisalo M, Tarkiainen EK, Neuvonen M, et al. Ticagrelor increases exposure to the breast cancer resistance protein substrate rosuvastatin. Clin Pharmacol Ther. 2024;115(1):71–9. https://doi.org/10.1002/cpt.3067
24. Dermota T, Jug B, Trontelj J, et al. Ticagrelor is associated with increased rosuvastatin blood concentrations in patients who have had a myocardial infarction. Clin Pharmacokinet. 2025;64(4):565–71. https://doi.org/10.1007/s40262-025-01489-1
25. Parish LP, Cutshall T, Duhart B. Acute kidney injury and rhabdomyolysis due to ticagrelor and rosuvastatin. Nurse Pract. 2021;46(11):12–6. https://doi.org/10.1097/01.NPR.0000794540.96561.51
26. Park IS, Lee SB, Song SH, et al. Ticagrelor-induced acute kidney injury can increase serum concentration of statin and lead to concurrence of rhabdomyolysis. Anatol J Cardiol. 2018;19(3):225–6. https://doi.org/10.14744/AnatolJCardiol.2017.8200
27. Patel MR, Becker RC, Wojdyla DM, et al. Cardiovascular events in acute coronary syndrome patients with peripheral arterial disease treated with ticagrelor compared with clopidogrel: Data from the PLATO Trial. E J Prev Cardiol. 2015;22(6):734–42. https://doi.org/10.1177/2047487314533215
28. Hasan M, Ahmed M. A case report: Rosuvastatin induced rhabdomyolysis in an 80-year-old female. S D Med. 2024;77(11):501–2. PMID: 39820444
29. Zhang S, Yan MM, Zhao H, et al. Rhabdomyolysis associated with concomitant use of colchicine and statins in the real world: Identifying the likelihood of drug-drug interactions through the FDA adverse event reporting system. Front Pharmacol. 2024;15:1445324. https://doi.org/10.3389/fphar.2024.1445324
30. Atapour A, Momenzadeh M, Panahishokouh M, Badri S. Rosuvastatin-induced rhabdomyolysis as a result of drug interaction with sitagliptin: A case report. Clin Med Insights Case Rep. 2024;17:11795476241274162. https://doi.org/10.1177/11795476241274162
31. Korzec J, Strausbaugh R, Mikolay JJ Jr, Churchwell MD. Rhabdomyolysis and acute kidney injury potentiated by a drug-drug interaction between cyclosporine, leflunomide, and rosuvastatin in a kidney transplant recipient: A missed opportunity for pharmacist involvement. J Am Pharm Assoc (2003). 2024;64(3):102016. https://doi.org/10.1016/j.japh.2024.01.012
32. Teo SW, Hayes T, Gome J. Ribociclib may potentiate rosuvastatin effect in causing late onset rhabdomyolysis. BMJ Case Rep. 2023;16(9):e255632. https://doi.org/10.1136/bcr-2023-255632
33. Wei C, Yin W, He Z, Wu B. Reporting of drug-induced myopathies associated with the combination of statins and daptomycin: A disproportionality analysis using the US Food and Drug Administration Adverse Event Reporting System. J Clin Med. 2023;12(10):3548. https://doi.org/10.3390/jcm12103548
34. Carr DF, O’Meara H, Jorgensen AL, et al. SLCO1B1 genetic variant associated with statin-induced myopathy: A proof-of-concept study using the clinical practice research datalink. Clin Pharmacol Ther. 2013;94(6):695–701. https://doi.org/10.1038/clpt.2013.161
35. Liu JE, Liu XY, Chen S, et al. SLCO1B1 521T>C polymorphism associated with rosuvastatin-induced myotoxicity in Chinese coronary artery disease patients: A nested case-control study. Eur J Clin Pharmacol. 2017;73(11):1409–16. https://doi.org/10.1007/s00228-017-2318-z
36. Bai X, Zhang B, Wang P, et al. Effects of SLCO1B1 and GATM gene variants on rosuvastatin-induced myopathy are unrelated to high plasma exposure of rosuvastatin and its metabolites. Acta Pharmacol Sin. 2019;40(4):492–9. https://doi.org/10.1038/s41401-018-0013-y
37. Lehtisalo M, Taskinen S, Tarkiainen EK, et al. A comprehensive pharmacogenomic study indicates roles for SLCO1B1, ABCG2 and SLCO2B1 in rosuvastatin pharmacokinetics. Br J Clin Pharmacol. 2023;89(1):242–52. https://doi.org/10.1111/bcp.15485
38. Cooper-DeHoff RM, Niemi M, Ramsey LB, et al. The Clinical Pharmacogenetics Implementation Consortium Guideline for SLCO1B1, ABCG2, and CYP2C9 genotypes and statin-associated musculoskeletal symptoms. Clin Pharmacol Ther. 2022;111(5):1007–21. https://doi.org/10.1002/cpt.2557
39. Vrkić Kirhmajer M, Macolić Šarinić V, Šimičević L, et al. Rosuvastatin-induced rhabdomyolysis — possible role of ticagrelor and patients’ pharmacogenetic profile. Basic Clin Pharmacol Toxicol. 2018;123(4):509–18. https://doi.org/10.1111/bcpt.13035
40. Hohenegger M. Drug induced rhabdomyolysis. Curr Opin Pharmacol. 2012;12(3):335–9. https://doi.org/10.1016/j.coph.2012.04.002
41. Noe G, Shah K, Quattlebaum T, Munjal S. Rhabdomyolysis in the context of designer benzodiazepine misuse. Cureus. 2023;15(12):e50741. https://doi.org/10.7759/cureus.50741
42. Ramakrishna KN, Shah A, Martinez-Balzano CD. Massively elevated creatine kinase levels in antihistamine-induced rhabdomyolysis. Proc (Bayl Univ Med Cent). 2019;33(1):44–6. https://doi.org/10.1080/08998280.2019.1688624
Supplementary files
|
1. А | |
Subject | ||
Type | Исследовательские инструменты | |
View
(460KB)
|
Indexing metadata ▾ |
|
2. В | |
Subject | ||
Type | Исследовательские инструменты | |
View
(291KB)
|
Indexing metadata ▾ |
|
3. С | |
Subject | ||
Type | Исследовательские инструменты | |
View
(361KB)
|
Indexing metadata ▾ |
|
4. D | |
Subject | ||
Type | Исследовательские инструменты | |
View
(403KB)
|
Indexing metadata ▾ |
|
5. E | |
Subject | ||
Type | Исследовательские инструменты | |
View
(481KB)
|
Indexing metadata ▾ |
|
6. F | |
Subject | ||
Type | Исследовательские инструменты | |
View
(377KB)
|
Indexing metadata ▾ |
|
7. G | |
Subject | ||
Type | Исследовательские инструменты | |
View
(612KB)
|
Indexing metadata ▾ |
|
8. H | |
Subject | ||
Type | Исследовательские инструменты | |
View
(479KB)
|
Indexing metadata ▾ |
|
9. Рис.1 | |
Subject | ||
Type | Исследовательские инструменты | |
View
(6MB)
|
Indexing metadata ▾ |
|
10. Рис.2 | |
Subject | ||
Type | Исследовательские инструменты | |
View
(6MB)
|
Indexing metadata ▾ |
![]() |
11. ред + корр | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(3MB)
|
Indexing metadata ▾ |
Review
For citations:
Makarova T.A., Zagorodnikova K.A., Makarov I.A., Dobrynina N.V., Sventitskaya E.E., Lobacheva Yu.N. Fatal Rhabdomyolysis after Rosuvastatin Dose Modification in Acute Coronary Syndrome: A Case Report. Safety and Risk of Pharmacotherapy. 2025;13(3):333-343. (In Russ.) https://doi.org/10.30895/2312-7821-2025-13-3-333-343