Preview

Safety and Risk of Pharmacotherapy

Advanced search

Social media as a source of information on drug safety and how to extract it

Abstract

We have prepared this review of the domestic and foreign scientific literature on how to use the social media for pharmacovigilance purposes. We examined the complexities that are connected with this kind of monitoring and how to extract information on adverse drug reactions from the Internet. The importance of a systematic approach in assessing the safety of drugs and the benefits of social networks is underlined. A description of applications for smartphones, which allow you to easily and quickly report drug adverse reactions is provided.

About the Authors

I. I. Snegireva
Scientific Centre for Expert Evaluation of Medicinal Products
Russian Federation


A. S. Kazakov
Scientific Centre for Expert Evaluation of Medicinal Products
Russian Federation


E. Yu. Pasternak
Scientific Centre for Expert Evaluation of Medicinal Products
Russian Federation


K. E. Zatolochina
Russian University of Friendship of Peoples
Russian Federation


T. V. Romanova
Scientific Centre for Expert Evaluation of Medicinal Products
Russian Federation


References

1. Härmark L, Raine J, Leufkens H, Edwards IR, et al. Patient–Reported Safety Information: A Renaissance of Pharmacovigilance? Drug Saf. 2016. 39(10):883–90. doi: 10.1007/s40264-016-0441.

2. Pitts PJ, Louet HL, Moride Y, Conti RM. 21st century pharmacovigilance: efforts, roles, and responsibilities. Lancet Oncol. 2016 Nov; 17(11):e486–e492. doi: 10.1016/S1470-2045(16)30312-6.

3. Pew Research Center: Internet ST. 2015. Health Online 2013 [Electronic source]. Available at http://www.pewinternet.org/2013/01/15/healthonline-2013/(last accessed 19 September 2017).

4. Sloane R, Osanlou O, Lewis D, Bollegala D, Maskell S. et al. Social media and pharmacovigilance: A review of the opportunities and challenges. Br J Clin Pharmacol. 2015 Oct; 80(4) Sep 2.doi:10.1111/bcp. 12717.

5. Chunara R, Andrews JR, Brownstein JS. Social and news media enable estimation of epidemiological patterns early in the 2010 Haitian cholera outbreak. Am J Trop Med Hyg. 2012; 86: 39–45.

6. Sarker A, Ginn R, Nikfarjam A, O’Connor K, Smith K, Jayaraman S, Upadhaya T, Gonzalez G. Utilizing social media data for pharmacovigilance: A review. J Biomed Inform. 2015; 54: 202–12. doi:10. 1016/j.jbi.2015.02.004.

7. Zatolochina KE, Snegireva AI, Kazakov AS, Kolesnikova EYu, Zhuravleva EO, Bukatina TM, Darmostukova MA. Modern approaches to collecting and reporting information on side effects. Safety and risk of pharmacotherapy 2017; 5(1): 32–8.

8. Lee K, Qadir A, Hasan SA, Datla V, Prakash A. at al. Adverse Drug Event Detection in Tweets with Semi–Supervised Convolutional Neural Networks. 2017 International World Wide Web Conference Committee (IW3C2), published under Creative Commons CC BY 4.0 License. WWW 2017, April 3–7, 2017, Perth, Australia. ACM 978-1-4503-4913-0/17/04. http://dx.doi.org/10.1145/3038912.3052671.

9. Patients like me 2015. Patients like me [Electronic source]. Available at https://www.patientslikeme.com. (last accessed 19 September 2017).

10. Daily Strength 2015. Online Support Groups and Forums at Daily Strength [Electronic source]. Available at http://www.dailystrength.org (last accessed 19 September 2017).

11. MedHelp 2015. All Ask a Doctor Forums and Medical Communities — MedHelp [Electronic source]. Available at http://www.medhelp.org/forums/list (last accessed 19 September 2017).

12. Matsuda S, Aoki K, Tomizawa S, Sone M, Tanaka R. at al. Analysis of Patient Narratives in Disease Blogs on the Internet: An Exploratory Study of Social Pharmacovigilance. JMIR Public Health Surveill. 2017 Jan–Mar; 3 (1): e10. Published online 2017 Feb 24. doi: 10.2196/publichealth.6872

13. Kadobayashi M. As a source of power to live: sociology of tobyoki for cancer [in Japanese] Tokyo: Seikaisha Press; 2011.

14. Sato A, Aramaki E, Shimamoto Y, Tanaka S, Kawakami K. Blog posting after lung cancer notification: content analysis of blogs written by patients or their families. JMIR Cancer 2015; 1 (1): e5. doi: 10.2196/cancer.3883.

15. Cocos A, Filks AG, Masino AJ. Deep learning for pharmacovigilance: recurrent neural network architectures for labeling adverse drug reactions in Twitter posts. J Am Med Inform Assoc. 2017 Feb 22 doi: 10.1093/jamia/ocw180.

16. Harpaz R, Callahan A, Tamang S, Low Y, Odgers D, Finlayson S, Jung K, LePendu P, Shah NH. Text Mining for Adverse Drug Events: the Promise, Challenges, and State of the Art. DrugSafety. doi:10.1007/s40264-014-0218-z.

17. Decision of the Council of the Eurasian Economic Commission of 03.11.2016 No. 87 «On the Approval of the Rules of Good Pharmacovigilance Practice of the Eurasian Economic Union». [Electronic resource] (last accessed 30.08.2017). https://docs.eaeunion.org/docs/en-ru/01411948/cncd_21112016_87.

18. Merkulov VA, Bunatyan ND, Sakaeva IV, Lepakhin VC, Romanov BK. New legislative initiatives for improvingthe safety of medicines in the European Union. The Bulletin of the Scientific Centre for Expert Evaluation of Medicinal Products 2013; (3): 45–48.

19. Abbasi A, Adjeroh D. Social Media Analytics for Smart Health. Intelligent Systems 2014: 60–80.

20. Leaman R, Wojtulewicz L, Sullivan R, Skariah A, Yang J, Gonzalez G. Towards Internet-Age Pharmacovigilance: Extracting Adverse Drug Reactions from User Posts to Health-Related Social Networks; Proceedings of the 2010 Workshop on Biomedical Natural Language Processing; 2010.

21. O’Connor K, Nikfarjam A, Ginn R, Pimpalkhute P, Sarker A, Smith K, Gonzalez G. Pharmacovigilance on Twitter? Mining Tweets for Adverse Drug Reactions; Proceedings for the American Medical Informatics Association (AMIA) Annual Symposium; 2014.

22. Nikfarjam A, Sarker A, O’Connor K, Ginn R, Gonzalez G. Pharmacovigilance from social media: mining adverse drug reaction mentions using sequence labeling with word embedding cluster features. J Am Med Inform Assoc. 2015 May; 22 (3): 671–81. doi: 10.1093/jamia/ocu041.

23. Deep learning for Java. Open–source. [Ýëåêòðîííûé ðåñóðñ]. 2017 (äàòà îáðàùåíèÿ 01.09.2017). Äîñòóïíî íà: https://deeplearning4j.org/lstm.html.

24. Abdellaoui R, Schuck S, Texier N, Burqun A. Filtering entities to optimize identification of adverse drug reaction from social media: how can the number of words between entities in the messages help? JMIR Public Health Surveill. 2017 Jun 22; 3 (2): e36. doi: 10.2196/publichealth.6577.

25. WEB–RADR. Recognising Adverse Drug [Electronic Source] (lastaccessed 19 September 2017) Available from: https://web-radr.eu/author/webradreu.

26. Netherlands Pharmacovigilance Center Lareb. [Electronic Source] (lastaccessed 19 September 2017) Available from: https://www.lareb.nl/en/news/new-side-effect-app.

27. Agency for Medicinal Devices of Croatia [Electronic Source] (lastaccessed 19 September 2017) Available from: http://www.halmed.hr/en/O-HALMED-u.

28. Yellow Card Application [Electronic Source] (lastaccessed 19 September 2017) Available from: https://yellowcard.mhra.gov.uk/iDAP.

29. Wallberg M. Drug–name look–up in mobile apps made easier. Uppsala reports 2017; (76): 28.

30. Take and tellapplication [Electronic Source] (lastaccessed 19 September 2017). Available from: http://www.takeandtell.org /#app.

31. Takahashi Y, Ohura T, Ishizaki T, Okamoto S, Miki K, Naito M, Akamatsu R, Sugimori H, Yoshiike N, Miyaki K, Shimbo T, Nakayama T. Internet use for health- related information via personal computers and cell phones in Japan: a cross- sectional population- based survey. J Med Internet Res. 2011; 13 (4): e110. doi: 10.2196/jmir.1796. http://www.jmir.org/2011/4/e110.

32. Bahk C. Y., Goshgarian M., Donahue K., Freifeld C. C., Menone C. M. at al. Increasing Patient Engagement in Pharmacovigilance Through Online Community Outreach and Mobile Reporting Applications: An Analysis of Adverse Event Reporting for the Essure Device in the US. Pharmaceut Med.2015; 29 (6): 331–340.Published online 2015 Aug 5. doi:10.1007/s40290-015-0106-6.

33. Wong C. A., Merchant R. M., Moreno M. A. Using social media to engage adolescents and young adults with their health Healthc (Amst). Author manuscript; available in PMC 2015 May 15.Published in final edited form as: Healthc (Amst). 2014 Dec; 2 (4): 220–224. doi:10.1016/j.hjdsi.2014.10.005.

34. Uppsala Monitoring Center [Electronic Source] (last accessed 19 September 2017) Available from: https://www.who-umc.org/safer-use-of-medicines/annie-macs-adventures.

35. Romanov BK, Toropova II, Kolesnikova EYu. Medication errors. Safety and risk of pharmacotherapy 2014; 2(3): 28–30.


Review

For citations:


Snegireva I.I., Kazakov A.S., Pasternak E.Yu., Zatolochina K.E., Romanova T.V. Social media as a source of information on drug safety and how to extract it. Safety and Risk of Pharmacotherapy. 2017;5(4):174-181. (In Russ.)

Views: 1296


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2312-7821 (Print)
ISSN 2619-1164 (Online)