Preview

Safety and Risk of Pharmacotherapy

Advanced search

Using Zebrafish in Preclinical Drug Studies: Challenges and Opportunities

https://doi.org/10.30895/2312-7821-2023-11-3-303-321

Abstract

Scientific relevance. Since fiscal and regulatory constraints substantially limit bioscreening in rodent models, a wider implementation of additional alternative models in preclinical studies of medicines is gaining momentum. These alternative models include aquatic vertebrates, such as zebrafish (Danio rerio).

Aim. The study aimed to examine zebrafish models in terms of their performance in preclinical studies, their current uses, the challenges and opportunities in the field, and strategic directions for the development of preclinical testing in zebrafish.

Discussion. Here, the authors summarise the key zebrafish tests that are currently used to assess a wide range of small molecules for their general and endocrine toxicity and effects on the survival of embryos and larvae. The review discusses the strengths and weaknesses of zebrafish models for preclinical testing of neurotropic agents. Additionally, the authors overview various methodological approaches to improving zebrafish toxicity testing. Overall, the use of zebrafish models is gradually becoming internationally established for laboratory testing of small molecules.

Conclusions. A wider implementation of zebrafish models in pharmaceutical research and preclinical testing as an additional alternative to rodents, particularly in Russia, may significantly accelerate the development of novel medicinal products and foster a more comprehensive and adequate assessment of the biological risks associated with chemical substances.

About the Authors

A. V. Kalueff
Sirius University of Science and Technology; Almazov National Medical Research Center; St Petersburg State University; A.M. Granov Russian Research Center for Radiology and Surgical Technologies
Russian Federation

Allan V. Kalueff - Dr. Sci. (Biol.), Professor of the Russian Academy of Sciences.

Olimpiyskiy Ave, Sirius urban-type settlement Krasnodar region 354340; Akkuratova St., St Petersburg 197341; 7–9 Universitetskaya Emb., St Petersburg 199034; 70 Leningradskaya St., Pesochny settlement, St Petersburg 197758



M. M. Kotova
Sirius University of Science and Technology
Russian Federation

Maria M. Kotova

Olimpiyskiy Ave, Sirius urban-type settlement Krasnodar region 354340



A. N. Ikrin
Sirius University of Science and Technology
Russian Federation

Aleksey N. Ikrin

Olimpiyskiy Ave, Sirius urban-type settlement Krasnodar region 354340



T. O. Kolesnikova
Sirius University of Science and Technology
Russian Federation

Tatiana O. Kolesnikova

Olimpiyskiy Ave, Sirius urban-type settlement Krasnodar region 354340



References

1. Cook D, Brown D, Alexander R, March R, Morgan P, Satterthwaite G, et al. Lessons learned from the fate of AstraZeneca’s drug pipeline: a five-dimensional framework. Nat Rev Drug Discov. 2014;13(6):419–31. https://doi.org/10.1038/nrd4309

2. Waring MJ, Arrowsmith J, Leach AR, Leeson PD, Mandrell S, Owen RM, et al. An analysis of the attrition of drug candidates from four major pharmaceutical companies. Nat Rev Drug Discov. 2015;14(7):475–86. https://doi.org/10.1038/nrd4609

3. Krotova NA, Lakstygal AM, Taranov AS, Ilyin NP, Bytov MV, Volgin AD, et al. Zebrafish as a new perspective model in translational neurobiology. I.M. Sechenov Russian Journal of Physiology. 2019;105(11):1417–35 (In Russ.). https://doi.org/10.1134/S0869813919110062

4. Galstyan DS, Kolesnikova TO, Kositsyn YuM, Zabegalov KN, Gubaydullina MA, Maslov GO, et al. Modeling and assaying seizure activity in zebrafish (Danio rerio). Reviews on Clinical Pharmacology and Drug Therapy. 2022;20(2):193–9 (In Russ.). https://doi.org/10.17816/RCF202193-199

5. Derzhavina KA, Ilyin NP, Seredinskaya MV, Nerush MO, Zakharchenko KV, Sorokin DV, et al. Zebrafish as a model organism for rare diseases of nervous system. Russian Journal for Personalized Medicine. 2022;2(2):17–32 (In Russ.). https://doi.org/10.18705/2782-3806-2022-2-2-17-32

6. Kalueff AV. Principles of modeling brain diseases and their therapy based on zebrafish studies. Reviews on Clinical Pharmacology and Drug Therapy. 2022;20(2):119–22 (In Russ.). https://doi.org/10.17816/RCF202119-122

7. Lowery LA, De Rienzo G, Gutzman JH, Sive H. Characterization and classification of zebrafish brain morphology mutants. Anat Rec. 2009;292(1):94–106. https://doi.org/10.1002/ar.20768

8. Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C, Muffato M, et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature. 2013;496(7446):498–503. https://doi.org/10.1038/nature12111

9. Kalueff AV, Stewart AM, Gerlai R. Zebrafish as an emerging model for studying complex brain disorders. Trends Pharmacol Sci. 2014;35(2):63–75. https://doi.org/10.1016/j.tips.2013.12.002

10. Burgess HA, Burton EA. A critical review of zebrafish neurological disease models–1. The premise: neuroanatomical, cellular, and genetic homology, and experimental tractability. Oxford Open Neuroscience. 2023;2:kvac018. https://doi.org/10.1093/oons/kvac018

11. Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C, Muffato M, et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature. 2013;496(7446):498–503. https://doi.org/10.1038/nature12111

12. Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF. Stages of embryonic development of the zebrafish. Dev Dyn. 1995;203(3):253–310. https://doi.org/10.1002/aja.1002030302

13. Suvorova M, Zharkova I, Sutuyeva L, Ondasynova A. ZFET (Zebrafish embryotoxicity test) as a model test for determination of heavy metals embryotoxicity. Experimental Biology. 2016;66(1):68–76.

14. Rana J, Ansari E, Patel D, Prabhu P. Effect of 3, 4-dichloroaniline on growth of juvenile zebrafish (Danio rerio). Int J Fish Aquat Stud. 2020;2(3):456–60.

15. Kazeto Y, Ijiri S, Place AR, Zohar Y, Trant JM. The 5’-flanking regions of CYP19A1 and CYP19A2 in zebrafish. Biochem Biophys Res Commun. 2001;288(3):503–8. https://doi.org/10.1006/bbrc.2001.5796

16. Tang H, Chen Y, Liu Y, Yin Y, Li G, Guo Y, et al. New insights into the role of estrogens in male fertility based on findings in aromatase-deficient zebrafish. Endocrinology. 2017;158(9):3042–54. https://doi.org/10.1210/en.2017-00156

17. Diotel N, Charlier TD, Lefebvre d’Hellencourt C, Couret D, Trudeau VL, Nicolau JC, et al. Steroid transport, local synthesis, and signaling within the brain: roles in neurogenesis, neuroprotection, and sexual behaviors. Front Neurosci. 2018;12:84. https://doi.org/10.3389/fnins.2018.00084

18. Berbel P, Bernal J. Hypothyroxinemia: a subclinical condition affecting neurodevelopment. Expert Rev Endocrinol Metab. 2010;5(4):563–75. https://doi.org/10.1586/eem.10.37

19. Raldúa D, Babin PJ. Simple, rapid zebrafish larva bioassay for assessing the potential of chemical pollutants and drugs to disrupt thyroid gland function. Environ Science Technol. 2009;43(17):6844–50. https://doi.org/10.1021/es9012454

20. Kidd KA, Paterson MJ, Rennie MD, Podemski CL, Findlay DL, Blanchfield PJ, et al. Direct and indirect responses of a freshwater food web to a potent synthetic oestrogen. Philos Trans R Soc B: Biol Sci. 2014;369(1656):20130578. https://doi.org/10.1098/rstb.2013.0578

21. Brion F, Tyler C, Palazzi X, Laillet B, Porcher J-M, Garric J, et al. Impacts of 17β-estradiol, including environmentally relevant concentrations, on reproduction after exposure during embryo-larval-, juvenile-and adult-life stages in zebrafish (Danio rerio). Aquat Toxicol. 2004;68(3):193–217. https://doi.org/10.1016/j.aquatox.2004.01.022

22. Nash JP, Kime DE, Van der Ven LT, Wester PW, Brion F, Maack G, et al. Long-term exposure to environmental concentrations of the pharmaceutical ethynylestradiol causes reproductive failure in fish. Environ Health Perspect. 2004;112(17):1725–33. https://doi.org/10.1289/ehp.7209

23. Tong SK, Mouriec K, Kuo MW, Pellegrini E, Gueguen MM, Brion F, et al. A cyp19a1b-gfp (aromatase B) transgenic zebrafish line that expresses GFP in radial glial cells. Genesis. 2009;47(2):67–73. https://doi.org/10.1002/dvg.20459

24. Brion F, De Gussem V, Buchinger S, Hollert H, Carere M, Porcher J-M, et al. Monitoring estrogenic activities of waste and surface waters using a novel in vivo zebrafish embryonic (EASZY) assay: Comparison with in vitro cellbased assays and determination of effect-based trigger values. Environ Int. 2019;130:104896. https://doi.org/10.1016/j.envint.2019.06.006

25. Di Paolo C, Groh KJ, Zennegg M, Vermeirssen EL, Murk AJ, Eggen RI, et al. Early life exposure to PCB126 results in delayed mortality and growth impairment in the zebrafish larvae. Aquat Toxicol. 2015;169:168–78. https://doi.org/10.1016/j.aquatox.2015.10.014

26. Wang J, Cao H. Zebrafish and medaka: important animal models for human neurodegenerative diseases. Int J Mol Sci. 2021;22(19):10766. https://doi.org/10.3390/ijms221910766

27. Stewart AM, Desmond D, Kyzar E, Gaikwad S, Roth A, Riehl R, et al. Perspectives of zebrafish models of epilepsy: what, how and where next? Brain Res Bull. 2012;87(2–3):135–43. https://doi.org/10.1016/j.brainresbull.2011.11.020

28. de Abreu MS, Maximino C, Banha F, Anastácio PM, Demin KA, Kalueff AV, et al. Emotional behavior in aquatic organisms? Lessons from crayfish and zebrafish. J Neurosci Res. 2020;98(5):764–79. https://doi.org/10.1002/jnr.24550

29. Bao W, Volgin AD, Alpyshov ET, Friend AJ, Strekalova TV, de Abreu MS, et al. Opioid neurobiology, neurogenetics and neuropharmacology in zebrafish. Neuroscience. 2019;404:218–32. https://doi.org/10.1016/j.neuroscience.2019.01.045

30. Sundvik M, Chen YC, Panula P. Presenilin1 regulates histamine neuron development and behavior in zebrafish, danio rerio. J Neurosci. 2013;33(4):1589–97. https://doi.org/10.1523/jneurosci.1802-12.2013

31. Pu YZ, Liang L, Fu AL, Liu Y, Sun L, Li Q, et al. Generation of Alzheimer’s disease transgenic zebrafish expressing human APP mutation under control of zebrafish appb promotor. Curr Alzheimer Res. 2017;14(6):668–79. https://doi.org/10.2174/1567205013666161201202000

32. Paquet D, Bhat R, Sydow A, Mandelkow EM, Berg S, Hellberg S, et al. A zebrafish model of tauopathy allows in vivo imaging of neuronal cell death and drug evaluation. J Clin Invest. 2009;119(5):1382–95. https://doi.org/10.1172/jci37537

33. Lopez A, Lee SE, Wojta K, Ramos EM, Klein E, Chen J, et al. A152T tau allele causes neurodegeneration that can be ameliorated in a zebrafish model by autophagy induction. Brain. 2017;140(4):1128–46. https://doi.org/10.1093/brain/awx005

34. Bai Q, Garver JA, Hukriede NA, Burton EA. Generation of a transgenic zebrafish model of Tauopathy using a novel promoter element derived from the zebrafish eno2 gene. Nucleic Acids Res. 2007;35(19):6501–16.

35. Nada SE, Williams FE, Shah ZA. Development of a novel and robust pharmacological model of okadaic acid-induced Alzheimer’s disease in zebrafish. CNS Neurol Disord Drug Targets. 2016;15(1):86–94. https://doi.org/10.2174/1871527314666150821105602

36. Saint-Amant L, Drapeau P. Time course of the development of motor behaviors in the zebrafish embryo. J Neurobiol. 1998;37(4):622–32. https://doi.org/10.1002/(sici)10974695(199812)37:4%3C622::aid-neu10%3E3.0.co;2-s

37. Basnet RM, Zizioli D, Taweedet S, Finazzi D, Memo M. Zebrafish larvae as a behavioral model in neuropharmacology. Biomedicines. 2019;7(1):23. https://doi.org/10.3390%2Fbiomedicines7010023

38. Suryanto ME, Audira G, Uapipatanakul B, Hussain A, Saputra F, Siregar P, et al. Antidepressant screening demonstrated non-monotonic responses to amitriptyline, amoxapine and sertraline in locomotor activity assay in larval zebrafish. Cells. 2021;10(4):738. https://doi.org/10.3390/cells10040738

39. Colwill RM, Creton R. Locomotor behaviors in zebrafish (Danio rerio) larvae. Behav Processes. 2011;86(2):222–9. https://doi.org/10.1016/j.beproc.2010.12.003

40. Afrikanova T, Serruys ASK, Buenafe OEM, Clinckers R, Smolders I, de Witte PAM, et al. Validation of the zebrafish pentylenetetrazol seizure model: locomotor versus electrographic responses to antiepileptic drugs. PloS One. 2013;8(1):e54166. https://doi.org/10.1371/journal.pone.0054166

41. Blaser RE, Rosemberg DB. Measures of anxiety in zebrafish (Danio rerio): dissociation of black/white preference and novel tank test. PloS One. 2012;7(5):e36931. https://doi.org/10.1371/journal.pone.0036931

42. Chen AB, Deb D, Bahl A, Engert F. Algorithms underlying flexible phototaxis in larval zebrafish. J Exp Biol. 2021;224(10):jeb238386. https://doi.org/10.1242/jeb.238386

43. Zimmermann FF, Gaspary KV, Leite CE, De Paula Cognato G, Bonan CD. Embryological exposure to valproic acid induces social interaction deficits in zebrafish (Danio rerio): A developmental behavior analysis. Neurotoxicol Teratol. 2015;52(Pt A):36–41. https://doi.org/10.1016/j.ntt.2015.10.002

44. Dwivedi S, Medishetti R, Rani R, Sevilimedu A, Kulkarni P, Yogeeswari P. Larval zebrafish model for studying the effects of valproic acid on neurodevelopment: An approach towards modeling autism. J Pharmacol Toxicol Methods. 2019;95:56–65. https://doi.org/10.1016/j.vascn.2018.11.006

45. Scott CA, Marsden AN, Slusarski DC. Automated, high-throughput, in vivo analysis of visual function using the zebrafish. Dev Dyn. 2016;245(5):605–13. https://doi.org/10.1002/dvdy.24398

46. Thorn RJ, Dombroski A, Eller K, Dominguez-Gonzalez TM, Clift DE, Baek P, et al. Analysis of vertebrate vision in a 384-well imaging system. Sci Rep. 2019;9(1):13989. https://doi.org/10.1038/s41598-019-50372-0

47. Maslov GO, Kolesnikova TO, Zabegalov KN, Kalueff AV. Experimental approaches to modeling delirium in zebrafish (Danio rerio). Reviews on Clinical Pharmacology and Drug Therapy. 2022;20(2):177–83 (In Russ.). https://doi.org/10.17816/RCF202177-183

48. Galstyan DS, Kolesnikova TO, Kositsyn YuM, Zabegalov KN, Gubaidullina MA, Maslov GO, et al. Using zebrafish (Danio rerio) to assess short-term memory: the habituation and the homebase tests. Reviews on Clinical Pharmacology and Drug Therapy. 2022;20(2):166–75 (In Russ.). https://doi.org/10.17816/RCF202169-175

49. Galstyan DS, Kolesnikova TO, Kositsyn YuM, Zabegalov KN, Gubaidullina MA, Maslov GO, et al. Despair-like behavior in fish based on the zebrafish (Danio rerio). Reviews on Clinical Pharmacology and Drug Therapy. 2022;20(2):157–62 (In Russ.). https://doi.org/10.17816/RCF202157-162

50. Stewart AM, Kalueff AV. The developing utility of zebrafish models for cognitive enhancers research. Curr Neuropharmacol. 2012;10(3):263–71. https://doi.org/10.2174%2F157015912803217323

51. Galstyan DS, Kolesnikova TO, Kositsyn YuM, Zabegalov KN, Gubaidullina MA, Maslov GO, et al. Assessment of general locomotor activity and anxiety in zebrafish (Danio rerio) in the light-dark box (tank), the shoaling test, in the novel tank and the open field tests. Reviews on Clinical Pharmacology and Drug Therapy. 2022;20(2):123–33 (In Russ.). https://doi.org/10.17816/RCF202123-133

52. Levin ED, Bencan Z, Cerutti DT. Anxiolytic effects of nicotine in zebrafish. Physiol Behav. 2007;90(1):54–8. https://doi.org/10.1016/j.physbeh.2006.08.026

53. Serra EL, Medalha CC, Mattioli R. Natural preference of zebrafish (Danio rerio) for a dark environment. Braz J Med Biol Res. 1999;32(12):1551–3. https://doi.org/10.1590/s0100-879x1999001200016

54. Blaser RE, Chadwick L, McGinnis GC. Behavioral measures of anxiety in zebrafish (Danio rerio). Behav Brain Res. 2010;208(1):56–62. https://doi.org/10.1016/j.bbr.2009.11.009

55. Ward AJ, Duff AJ, Horsfall JS, Currie S. Scents and scents-ability: pollution disrupts chemical social recognition and shoaling in fish. Proc Biol Sci. 2008;275(1630):101–5. https://doi.org/10.1098/rspb.2007.1283

56. Galstyan DS, Kolesnikova TO, Kositsyn YuM, Zabegalov KN, Gubaidullina MA, Maslov GO, et al. Studying social behavior in zebrafish (Danio rerio) in the tests of social interaction, social preference, behavior in the shoaling and aggression tasks. Reviews on Clinical Pharmacology and Drug Therapy. 2022;20(2):135–47 (In Russ.). https://doi.org/10.17816/RCF202135-147

57. Volgin AD, Bashirzade A, Amstislavskaya TG, Yakovlev OA, Demin KA, Ho YJ, et al. DARK classics in chemical neuroscience: arecoline. ACS Chem Neurosci. 2019;10(5):2176–85. https://doi.org/10.1021/acschemneuro.8b00711

58. Galstyan DS, Kolesnikova TO, Kositsyn YuM, Zabegalov KN, Gubaidullina MA, Maslov GO, et al. Cognitive tests in zebrafish (Danio rerio): Tand Y-mazes. Reviews on Clinical Pharmacology and Drug Therapy. 2022;20(2):163–8 (In Russ.). https://doi.org/10.17816/RCF202163-168

59. Grossman L, Stewart A, Gaikwad S, Utterback E, Wu N, Dileo J, et al. Effects of piracetam on behavior and memory in adult zebrafish. Brain Res Bull. 2011;85(1–2):58–63. https://doi.org/10.1016/j.brainresbull.2011.02.008

60. Rajesh V, Mridhulmohan M, Jayaseelan S, Sivakumar P, Ganesan V. Mefenamic acid attenuates chronic alcohol induced cognitive impairment in zebrafish: possible role of cholinergic pathway. Neurochem Res. 2018;43(7):1392–404. https://doi.org/10.1007/s11064-018-2554-3

61. de Castro MR, Lima JV, Salomão de Freitas DP, de Souza Valente R, Dummer NS, de Aguiar RB, et al. Behavioral and neurotoxic effects of arsenic exposure in zebrafish (Danio rerio, Teleostei: Cyprinidae). Comp Biochem Physiol C: Toxicol Pharmacol. 2009;150(3):337–42. https://doi.org/10.1016/j.cbpc.2009.05.017

62. Morash MG, Kirzinger MW, Achenbach JC, Venkatachalam AB, Cooper JP, Ratzlaff DE, et al. The contribution of larval zebrafish transcriptomics to chemical risk assessment. Regul Toxicol Pharmacol. 2023;138:105336. https://doi.org/10.1016/j.yrtph.2023.105336

63. Kolesnikova TO, Ilyin NP, Kotova MM, Kalueff AV. Zebrafish as a promising model in translational neurobiology and biomedicine. Progress in Physiological Sciences. 2023;54(3):1–18 (In Russ.).

64. Cachat J, Stewart A, Utterback E, Hart P, Gaikwad S, Wong K, et al. Three-dimensional neurophenotyping of adult zebrafish behavior. PloS One. 2011;6(3):e17597. https://doi.org/10.1371/journal.pone.0017597

65. Branson K. Distinguishing seemingly indistinguishable animals with computer vision. Nat Methods. 2014;11(7):721–2. https://doi.org/10.1038/nmeth.3004

66. Miroshnikova EP, Kosyan DB, Arinzhanov AE, Sizova EA, Kalashnikov VV. Assessment of general toxicity and prooxidant effects of CeO2 and SiO2 nanoparticles on Danio rerio. Agricultural Biology. 2016;51(6):921–8 (In Russ.). https://doi.org/10.15389/agrobiology.2016.6.921rus

67. Jones LJ, Norton WH. Using zebrafish to uncover the genetic and neural basis of aggression, a frequent comorbid symptom of psychiatric disorders. Behav Brain Res. 2015;276:171–80. https://doi.org/10.1016/j.bbr.2014.05.055

68. Purushothaman S, Saxena S, Meghah V, Meena Lakshmi MG, Singh SK, Brahmendra Swamy CV, et al. Proteomic and gene expression analysis of zebrafish brain undergoing continuous light/dark stress. J Sleep Res. 2015;24(4):458–65. https://doi.org/10.1111/jsr.12287

69. Pérez-Escudero A, Vicente-Page J, Hinz RC, Arganda S, De Polavieja GG. idTracker: tracking individuals in a group by automatic identification of unmarked animals. Nat Methods. 2014;11(7):743–8. https://doi.org/10.1038/nmeth.2994

70. Conklin EE, Lee KL, Schlabach SA, Woods IG. VideoHacking: automated tracking and quantification of locomotor behavior with open source software and off-the-shelf video equipment. J Undergrad Neurosci Educ. 2015;13(3):A120–5. PMID: 26240518

71. Stewart AM, Braubach O, Spitsbergen J, Gerlai R, Kalueff AV. Zebrafish models for translational neuroscience research: from tank to bedside. Trends Neurosci. 2014;37(5):264–78. https://doi.org/10.1016/j.tins.2014.02.011

72. Saverino C, Gerlai R. The social zebrafish: behavioral responses to conspecific, heterospecific, and computer animated fish. Behav Brain Res. 2008;191(1):77–87. https://doi.org/10.1016/j.bbr.2008.03.013

73. Love DR, Pichler FB, Dodd A, Copp BR, Greenwood DR. Technology for high-throughput screens: the present and future using zebrafish. Curr Opin Biotechnol. 2004;15(6):564–71. https://doi.org/10.1016/j.copbio.2004.09.004

74. Stewart AM, Gerlai R, Kalueff AV. Developing highERthroughput zebrafish screens for in-vivo CNS drug discovery. Front Behav Neurosci. 2015;9:14. https://doi.org/10.3389/fnbeh.2015.00014

75. Stewart AM, Grieco F, Tegelenbosch RA, Kyzar EJ, Nguyen M, Kaluyeva A, et al. A novel 3D method of locomotor analysis in adult zebrafish: Implications for automated detection of CNS drug-evoked phenotypes. J Neurosci Methods. 2015;255:66–74. https://doi.org/10.1016/j.jneumeth.2015.07.023

76. Bali J, Garg R, Bali RT. Artificial intelligence (AI) in healthcare and biomedical research: Why a strong computational/AI bioethics framework is required? Indian J Ophthalmol. 2019;67(1):3–6. https://doi.org/10.4103/ijo.IJO_1292_18

77. Bozhko DV, Myrov VO, Kolchanova SM, Polovian AI, Galumov GK, Demin KA, et al. Artificial intelligence-driven phenotyping of zebrafish psychoactive drug responses. Prog Neuropsychopharmacol Biol Psychiatry. 2022;112:110405. https://doi.org/10.1016/j.pnpbp.2021.110405

78. Biechele-Speziale D, Camarillo M, Martin NR, BiecheleSpeziale J, Lein PJ, Plavicki JS. Assessing CaMPARI as new approach methodology for evaluating neurotoxicity. Neurotoxicology. 2023;S0161-813X(23)00079-7. https://doi.org/10.1016/j.neuro.2023.05.013

79. Glasauer SM, Neuhauss SC. Whole-genome duplication in teleost fishes and its evolutionary consequences. Mol Genet Genomics. 2014;289(6):1045–60. https://doi.org/10.1007/s00438-014-0889-2

80. Sato Y, Hashiguchi Y, Nishida M. Temporal pattern of loss/ persistence of duplicate genes involved in signal transduction and metabolic pathways after teleost-specific genome duplication. BMC Evol Biol. 2009;9:127. https://doi.org/10.1186/1471-2148-9-127

81. Hoffman EJ, Turner KJ, Fernandez JM, Cifuentes D, Ghosh M, Ijaz S, et al. Estrogens suppress a behavioral phenotype in zebrafish mutants of the autism risk gene, CNTNAP2. Neuron. 2016;89(4):725–33. https://doi.org/10.1016/j.neuron.2015.12.039

82. Schmid B, Hruscha A, Hogl S, Banzhaf-Strathmann J, Strecker K, van der Zee J, et al. Loss of ALS-associated TDP-43 in zebrafish causes muscle degeneration, vascular dysfunction, and reduced motor neuron axon outgrowth. Proc Natl Acad Sci USA. 2013;110(13):4986–91. https://doi.org/10.1073/pnas.1218311110

83. de Abreu MS, Giacomini A, Genario R, Fontana BD, Parker MO, Marcon L, et al. Zebrafish models of impulsivity and impulse control disorders. Eur J Neurosci. 2020;52(10):4233–48. https://doi.org/10.1111/ejn.14893

84. Kulkarni P, Chaudhari GH, Sripuram V, Banote RK, Kirla KT, Sultana R, et al. Oral dosing in adult zebrafish: proof-of-concept using pharmacokinetics and pharmacological evaluation of carbamazepine. Pharmacol Rep. 2014;66(1):179–83. https://doi.org/10.1016/j.pharep.2013.06.012

85. Nery LR, Eltz NS, Hackman C, Fonseca R, Altenhofen S, Guerra HN, et al. Brain intraventricular injection of amyloid-β in zebrafish embryo impairs cognition and increases tau phosphorylation, effects reversed by lithium. PLoS One. 2014;9(9):e105862. https://doi.org/10.1371/journal.pone.0105862

86. Parker MO, Millington ME, Combe FJ, Brennan CH. Development and implementation of a three-choice serial reaction time task for zebrafish (Danio rerio). Behav Brain Res. 2012;227(1):73–80. https://doi.org/10.1016/j.bbr.2011.10.037

87. Fernandes Y, Tran S, Abraham E, Gerlai R. Embryonic alcohol exposure impairs associative learning performance in adult zebrafish. Behav Brain Res. 2014;265:181–7. https://doi.org/10.1016%2Fj.bbr.2014.02.035

88. Kalueff AV, Echevarria DJ, Homechaudhuri S, Stewart AM, Collier AD, Kaluyeva AA, et al. Zebrafish neurobehavioral phenomics for aquatic neuropharmacology and toxicology research. Aquat Toxicol. 2016;170:297–309. https://doi.org/10.1016/j.aquatox.2015.08.007

89. Panula P, Chen Y-C, Priyadarshini M, Kudo H, Seme nova S, Sundvik M, et al. The comparative neuroanatomy and neurochemistry of zebrafish CNS systems of relevance to human neuropsychiatric diseases. Neurobiol Dis. 2010;40(1):46–57. https://doi.org/10.1016/j.nbd.2010.05.010

90. Wang Y, Li S, Liu W, Wang F, Hu L-F, Zhong ZM, et al. Vesicular monoamine transporter 2 (Vmat2) knockdown elicits anxiety-like behavior in zebrafish. Biochem Biophys Res Commun. 2016;470(4):792–7. https://doi.org/10.1016/j.bbrc.2016.01.079

91. Cunliffe VT. Building a zebrafish toolkit for investigating the pathobiology of epilepsy and identifying new treatments for epileptic seizures. J Neurosci Methods. 2016;260:91–5. https://doi.org/10.1016/j.jneumeth.2015.07.015

92. Grone BP, Baraban SC. Animal models in epilepsy research: legacies and new directions. Nat Neurosci. 2015;18(3):339–43. https://doi.org/10.1038/nn.3934

93. Baraban SC, Dinday MT, Hortopan GA. Drug screening in Scn1a zebrafish mutant identifies clemizole as a potential Dravet syndrome treatment. Nat Commun. 2013;4:2410. https://doi.org/10.1038/ncomms3410

94. Tannenbaum J, Bennett BT. Russell and Burch’s 3Rs then and now: the need for clarity in definition and purpose. J Am Assoc Lab Anim Sci. 2015;54(2):120–32. PMID: 25836957

95. Cassar S, Adatto I, Freeman JL, Gamse JT, Iturria I, Lawrence C, et al. Use of zebrafish in drug discovery toxicology. Chem Res Toxicol. 2020;33(1):95–118. https://doi.org/10.1021/acs.chemrestox.9b00335


Supplementary files

Review

For citations:


Kalueff A.V., Kotova M.M., Ikrin A.N., Kolesnikova T.O. Using Zebrafish in Preclinical Drug Studies: Challenges and Opportunities. Safety and Risk of Pharmacotherapy. 2023;11(3):303-321. (In Russ.) https://doi.org/10.30895/2312-7821-2023-11-3-303-321

Views: 1095


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2312-7821 (Print)
ISSN 2619-1164 (Online)