Antipsychotic-Induced Parkinsonism: A Risk Assessment Scale and Personalised Diagnosis Algorithm
https://doi.org/10.30895/2312-7821-2024-418
Abstract
INTRODUCTION. Antipsychotic-induced parkinsonism (AIP) is an extrapyramidal adverse drug reaction (ADR) associated with antipsychotics (APs). Despite its classification as a non-serious ADR, AIP significantly decreases the quality of life in patients with schizophrenia spectrum disorders, which makes early diagnosis and timely management of AIP an urgent issue.
AIM. This study aimed to develop a risk assessment scale and a personalised diagnostic algorithm for AIP as the most common and clinically significant neurological ADR in patients with schizophrenia spectrum disorders.
MATERIALS AND METHODS. The authors analysed modifiable and non-modifiable risk factors for AIP, as well as rating scales, questionnaires, and laboratory testing methods to diagnose the condition. The analysis was based on full-text publications in Russian or in English sourced from the eLIBRARY.RU, PubMed, Springer, ClinicalKey, and Google Scholar databases. As a preliminary step, the authors compared the effectiveness of validated AIP risk assessment scales, including the Simpson–Angus Scale (SAS), the Extrapyramidal Symptom Rating Scale (ESRS), the Unified Parkinson’s Disease Rating Scale (UPDRS), the Hoehn and Yahr scale (H&Y Scale), the Webster Rating Scale, and the Mindham Rating Scale. Comparisons were made regarding the duration of testing, the degree of reliability in assessing clinical manifestations of AIP, and the ability to assess risk factors (predictors) of AIP and the rate of AIP development. The results obtained formed the basis for developing an AIP riskometer and a diagnostic algorithm.
RESULTS. The authors developed an original risk assessment scale for diagnosing and predicting AIP. Directions for personalised patient management were determined for patients at high and medium risk of AIP. This article presents an algorithm for diagnosing AIP in patients with schizophrenia spectrum disorders in two variants based on pro-reactive (predictive) or reactive pharmacogenetic testing. According to the study results, pro-reactive pharmacogenetic testing can help determine the risk of AIP in a patient before primary therapy.
CONCLUSIONS. The risk assessment scale and the personalised diagnostic algorithm developed by the authors may be useful for practising neurologists, psychiatrists, and clinical pharmacologists. The development and clinical implementation of novel tools for risk assessment, prevention, and diagnosis of AIP—the most common AP-associated neurological ADR—can improve the quality of treatment and preventive care for patients with schizophrenia spectrum disorders.
Keywords
About the Authors
N. A. ShnayderRussian Federation
Natalia А. Shnayder, Dr. Sci. (Med.), Professor
3 Bekhterev St., St Petersburg 192019
E. E. Vaiman
Russian Federation
Elena E. Vaiman
3 Bekhterev St., St Petersburg 192019
R. F. Nasyrova
Russian Federation
Regina F. Nasyrova, Dr. Sci. (Med.)
3 Bekhterev St., St Petersburg 192019
References
1. Levin OS, ed. Extrapyramidal disorders — yesterday, today, tomorrow. Moscow: MEDpress-inform; 2015 (In Russ.).
2. Shnayder NA, Vaiman EE, Neznanov NG, Nasyrova RF. Pharmacogenetics of antipsychotic-induced extrapyramidal disorders. St Petersburg: DEAN Publishing House; 2022 (In Russ.).
3. Vaiman EE, Shnayder NA, Neznanov NG, Nasyrova RF. Drug-induced parkinsonism. Social and Clinical Psychiatry. 2021;31(1):96–103 (In Russ.). EDN: MWEAHI
4. Mentzel CL, Bakker PR, van Os J, Drukker M, Matroos GE, Tijssen MAJ, vanHarten PN. Blink rate is associated with drug-induced parkinsonism in patients with severe mental illness but does not meet requirements to serve as a clinical test: The Curacao extrapyramidal syndromes study XIII. J Negat Results Biomed. 2017;16(1):15. https://doi.org/10.1186/s12952-017-0079-y
5. Levin OS. Diagnosis and treatment of extrapyramidal hyperkinesis. Lechaschi Vrach Journal. 2005;(6):20–6 (In Russ.).
6. Ivanova SA, Alifirova VM, Zhukova IA, Boiko AS, Fedorenko OY, Zhukova NG, Bokhan NA. The association of the DRD3 gene with Parkinson’s disease. S.S. Korsakov Journal of Neurology and Psychiatry. 2016;116(5):71–4 (In Russ). https://doi.org/10.17116/jnevro20161165171-74
7. Koning JP, Vehof J, Burger H, Wilffert B, Al Hadithy A, Alizadeh B, et al. Genetic Risk and Outcome in Psychosis (GROUP) investigators. Association of two DRD2 gene polymorphisms with acute and tardive antipsychotic-induced movement disorders in young Caucasian patients. Psychopharmacology (Berl). 2012;219(3):727–36. https://doi.org/10.1007/s00213-011-2394-1
8. Knol W, van Marum RJ, Jansen PA, Strengman E, Al Hadithy AF, Wilffert B, et al. Genetic variation and the risk of haloperidol-related parkinsonism in elderly patients: a candidate gene approach. J Clin Psychopharmacol. 2013;33(3):405–10. https://doi.org/10.1097/JCP.0b013e3182902708
9. Vaiman EE, Shnayder NA, Novitsky MA, Dobrodeeva VS, Goncharova PS, Bochanova EN, et al. Candidate genes encoding dopamine receptors as predictors of the risk of antipsychotic-induced parkinsonism and tardive dyskinesia in schizophrenic patients. Biomedicines. 2021;9:879. https://doi.org/10.3390/biomedicines9080879
10. Shnayder NA, Abdyrakhmanova AK, Nasyrova RF. Oxidation of antipsychotics. Encyclopedia. 2022;2:974–89. https://doi.org/10.3390/encyclopedia2020064
11. Preskorn SH. Drug-drug interactions (DDIs) in psychiatric practice, Part 9: Interactions mediated by drug-metabolizing cytochrome P450 enzymes. J Psychiatr Pract. 2020;26(2):126–34. https://doi.org/10.1097/PRA.0000000000000458
12. Shnayder NA, Khasanova AK, Nasyrova RF. First phase of antipsychotic metabolism in the liver: The role of oxidation. Pharmacogenetics and Pharmacogenomics. 2022;(1):15–30 (In Russ.). https://doi.org/10.37489/2588-0527-2022-1-15-30
13. Nasyrova RF, Shnayder NA, Osipova SM, Khasanova AK, Efremov IS, Al-Zamil M, et al. Genetic predictors of antipsychotic efflux impairment via blood-brain barrier: Role of transport proteins. Genes. 2023;14:1085. https://doi.org/10.3390/genes14051085
14. Ravyn D, Ravyn V, Lowney R, Nasrallah HA. CYP450 pharmacogenetic treatment strategies for antipsychotics: A review of the evidence. Schizophr Res. 2013;149(1–3):1–14. https://doi.org/10.1016/j.schres.2013.06.035
15. Nasyrova RF, Dobrodeeva VS, Skopin SD, Shnayder NА, Neznanov NG. Problems and prospects for the implementation of pharmacogenetic testing in real clinical practice in the Russian Federation. Bulletin of Neurology, Psychiatry and Neurosurgery. 2020;(3):6–12 (In Russ.). https://doi.org/10.33920/med-01-2003-01
16. Kostyuk GP, Zakharova NV, Reznik AM, Surkova EI, Ilinsky VV. Perspectives of the use of pharmacogenetic tests in neurology and psychiatry. S.S. Korsakov Journal of Neurology and Psychiatry. 2019;119(9):131–5 (In Russ.). https://doi.org/10.17116/jnevro2019119091131
17. Vaiman EE, Shnayder NA, Neznanov NG, Nasyrova RF. Diagnostic methods for drug-induced parkinsonism: A review of Russian and foreign literature. Siberian Herald of Psychiatry and Addiction Psychiatry. 2020;4(109):64–72 (In Russ.). https://doi.org/10.26617/1810-3111-2020-4(109)-64-72
18. Temmingh HS, van den Brink W, Howells F, Sibeko G, Stein DJ. Methamphetamine use and antipsychotic-related extrapyramidal side-effects in patients with psychotic disorders. J Dual Diagn. 2020;16(2):208–17. https://doi.org/10.1080/15504263.2020.1714099
19. Chouinard G, Cosci F, Chouinard VA, Alphs L. The Extrapyramidal Symptom Rating Scale and its abbreviated version: A critical review of clinimetric properties. Psychother Psychosom. 2023;92(6):359–66. https://doi.org/10.1159/000535113
20. Martínez-Martín P, Rodríguez-Blázquez C, Mario Alvarez, Arakaki T, Arillo VC, Chaná P, et al. Parkinson’s disease severity levels and MDS-Unified Parkinson’s Disease Rating Scale. Parkinsonism Relat Disord. 2015;21(1):50–4. https://doi.org/10.1016/j.parkreldis.2014.10.026
21. Opara J, Małecki A, Małecka E, Socha T. Motor assessment in Parkinson’s disease. Ann Agric Environ Med. 2017;24(3):411–5. https://doi.org/10.5604/12321966.1232774
22. Kapoor S, Saluja A, Margekar SL, Agarwal M, Mondal S, Dhamija RK. Neurogenic supine hypertension and cardiovascular autonomic dysfunction in patients with Parkinson’s disease. Ann Indian Acad Neurol. 2023;26(1):33–8. https://doi.org/10.4103/aian.aian_476_22
23. Bersani G, Grispini A, Marini S, Pasini A, Valducci M, Ciani N. 5-HT2 antagonist ritanserin in neuroleptic-induced parkinsonism: A double-blind comparison with orphenadrine and placebo. Clin Neuropharmacol. 1990;13(6):500–6. https://doi.org/10.1097/00002826-199012000-00003
24. Rajput AH, Offord KP, Beard CM, Kurland LT. Epidemiology of parkinsonism: Incidence, classification, and mortality. Ann Neurol. 1984;16(3):278–82. https://doi.org/10.1002/ana.410160303
25. Kennedy PF, Hershon HI, McGuire RJ. Extrapyramidal disorders after prolonged phenothiazine therapy. Br J Psychiatry. 1971;118(546):509–18.
26. Levin OS, Shindryaeva NN, Anikina MA. Drug-induced parkinsonism. Journal of Neurology and Psychiatry. 2012;8:69–74 (In Russ.).
27. Vaiman EE, Shnayder NA, Neznanov NG, Nasyrova RF. Candidate genes of the development of antipsychotic-induced parkinsonism in patients with schizophrenia. V.M. Вekhterev review of psychiatry and medical psychology. 2021;55(4):15–35 (In Russ.). https://doi.org/10.31363/2313-7053-2021-57-4-15-35
28. Micheli FE, Cersosimo MG. Drug-induced parkinsonism. Handb Clin Neurol. 2007;84:399–416. https://doi.org/10.1016/S0072-9752(07)84051-6
29. Caligiuri MR, Jeste DV, Lacro JP. Antipsychotic-induced movement disorders in the elderly: Epidemiology and treatment recommendations. Drugs Aging. 2000;17(5):363–84. https://doi.org/10.2165/00002512-200017050-00004
30. Thanvi B, Treadwell S. Drug induced parkinsonism: A common cause of parkinsonism in older people. Postgrad Med J. 2009;85(1004):322–6. https://doi.org/10.1136/pgmj.2008.073312
31. López-Sendón JL, Mena MA, de Yébenes JG. Drug-induced parkinsonism in the elderly: Incidence, management and prevention. Drugs Aging. 2012;29(2):105–18. https://doi.org/10.2165/11598540-000000000-00000
32. Van Gerpen JA. Drug-induced parkinsonism. Neurologist. 2002;8(6):363–70 https://doi.org/10.1097/00127893-200211000-00006
33. Stefani A, Pierantozzi M, Olivola E, Galati S, Cerroni R, D’Angelo V, et al. Homovanillic acid in CSF of mild stage Parkinson’s disease patients correlates with motor impairment. Neurochem Int. 2017;105:58–63. https://doi.org/10.1016/j.neuint.2017.01.007
34. Chia LG, Cheng FC, Kuo JS. Monoamines and their metabolites in plasma and lumbar cerebrospinal fluid of Chinese patients with Parkinson’s disease. J Neurol Sci. 1993;116(2):125–34. https://doi.org/10.1016/0022-510x(93)90316-q
35. Khasanova AK. Pharmacogenetic factors of clozapine-induced metabolic syndrome. Personalized Psychiatry and Neurology. 2023;3(2):38–47. https://doi.org/10.52667/2712-9179-2023-3-2-38-47
36. Neznanov NG. A paradigm shift to treat psychoneurological disorders. Personalized Psychiatry and Neurology. 2021;1(1):1–2.
37. Lara DV, Melo DO, Silva RAM, Santos PCJL. Pharmacogenetic testing in psychiatry and neurology: An overview of reviews. Pharmacogenomics. 2021;22(8):505–13. https://doi.org/10.2217/pgs-2020-0187
38. Redenšek S, Dolžan V. The role of pharmacogenomics in the personalization of Parkinson’s disease treatment. Pharmacogenomics. 2020;21(14):1033–43. https://doi.org/10.2217/pgs-2020-0031
39. Dahl ML. Cytochrome p450 phenotyping/genotyping in patients receiving antipsychotics: Useful aid to prescribing? Clin Pharmacokinet. 2002;41(7):453–70. https://doi.org/10.2165/00003088-200241070-00001
40. Bousman CA, Bengesser SA, Aitchison KJ, Amare AT, Aschauer H, Baune BT, et al. Review and consensus on pharmacogenomic testing in psychiatry. Pharmacopsychiatry. 2021;54(1):5–17. https://doi.org/10.1055/a-1288-1061
41. Eum S, Lee AM, Bishop JR. Pharmacogenetic tests for antipsychotic medications: Clinical implications and considerations. Dialogues Clin Neurosci. 2016;18(3):323–37. https://doi.org/10.31887/DCNS.2016.18.3/jbishop
42. Urban AE, Cubała WJ. Therapeutic drug monitoring of atypical antipsychotics. Psychiatr Pol. 2017;51(6):1059–77. https://doi.org/10.12740/PP/65307
43. Mauri MC, Paletta S, Di Pace C, Reggiori A, Cirnigliaro G, Valli I, et al. Clinical pharmacokinetics of atypical antipsychotics: An update. Clin Pharmacokinet. 2018;57(12):1493–528. https://doi.org/10.1007/s40262-018-0664-3
44. Potanin SS, Morozova MM, Beniashvili AG, Burminskiy DS, Miroshnichenko II. Guideline for the use of therapeutic drug monitoring of antipsychotics to individualize the selection of therapy in the treatment of exacerbation of schizophrenia. V.M. Вekhterev Review of Psychiatry and Medical Psychology. 2023;57(4):111–9 (In Russ.). https://doi.org/10.31363/2313-7053-2023-778
45. Milosavljevic F, Bukvic N, Pavlovic Z, Miljevic C, Pešic V, Molden E, et al. Association of CYP2C19 and CYP2D6 poor and intermediate metabolizer status with antidepressant and antipsychotic exposure: A systematic review and meta-analysis. JAMA Psychiatry. 2021;78(3):270–80. https://doi.org/10.1001/jamapsychiatry.2020.3643
46. Luvsantseren S, Whirl-Carrillo M, Sangkuhl K, Shin N, Wen A, Empey P, et al. Variant interpretation in current pharmacogenetic testing. J Pers Med. 2020;10(4):204. https://doi.org/10.3390/jpm10040204
47. Aronson JK. Francis Galton and the invention of terms for quantiles. J Clin Epidemiol. 2001;54(12):1191–4. https://doi.org/10.1016/s0895-4356(01)00420-6
48. Ward KM, Citrome L. Antipsychotic-related movement disorders: Drug-induced parkinsonism vs. tardive dyskinesia — key differences in pathophysiology and clinical management. Neurol Ther. 2018;7(2):233–48. https://doi.org/10.1007/s40120-018-0105-0
49. Sychev DA, Kutuzova LS, Vas’kova LB. Modern approach personalization warfarin dosing: Where and how you can make a pharmacogenetic testing in Russia? Pharmacogenetics and Pharmacogenomics. 2016;(1):24–8 (In Russ.). EDN: WCLOWD
Supplementary files
Review
For citations:
Shnayder N.A., Vaiman E.E., Nasyrova R.F. Antipsychotic-Induced Parkinsonism: A Risk Assessment Scale and Personalised Diagnosis Algorithm. Safety and Risk of Pharmacotherapy. 2025;13(1):70-85. (In Russ.) https://doi.org/10.30895/2312-7821-2024-418