Preview

Safety and Risk of Pharmacotherapy

Advanced search

Effects of Food on the Bioavailability of Medicinal Products in Bioequivalence Studies: A Comparative Analysis of Regulatory Documents

https://doi.org/10.30895/2312-7821-2025-13-1-86-93

Abstract

INTRODUCTION. Studying the effect of food on the bioavailability of medicinal products is important for selecting the right administration conditions for generics (in bioavailability and bioequivalence studies) and confirming the selection for originators in different patient groups (in clinical trials). However, there are currently no common harmonised requirements for food-effect bioavailability studies.
AIM. This study aimed to evaluate the conditions for investigating the effect of food on the bioavailability of medicinal products in bioequivalence studies through an analysis of the national and international regulatory requirements
for the conduct of clinical bioequivalence studies; additionally, this study aimed to identify common and unique requirements applied in different countries with a view to selecting the optimal conditions for conducting
bioequivalence studies of medicinal products.
DISCUSSION. Food-effect bioavailability studies of medicinal products should rely on the Biopharmaceutics Classification System (BCS) and the Biopharmaceutical Drug Disposition and Classification System (BDDCS), which
classify medicinal products by solubility, permeability, and metabolism. This study analysed documents reflecting the approaches of international organisations to bioequivalence studies, including documents by the World
Health Organisation (WHO), the International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH), and regulatory bodies of the Eurasian Economic Union, the European Union
(European Medicines Agency (EMA)), and the United States of America (Food and Drug Administration (FDA)). The analysis revealed differences in the conditions for studying the effect of food on the bioavailability of medicinal
products. A common approach is to require that bioequivalence studies should be conducted under standardised conditions. The differences lie in the expected scope of postprandial studies; the recommended meal
composition with regard to the energy, protein, carbohydrate, and fat content and local dietary preferences; and approaches to food-effect bioavailability studies of high-risk medicinal products, medicinal products with
linear and non-linear pharmacokinetics, and modified-release formulations.
CONCLUSIONS. The differences identified in the national and international requirements for the conduct of food-effect bioavailability studies of medicinal products underscore the need for regulatory standard harmonisation, which will contribute to ensuring the safe and effective use of medicinal products, to implementing uniform approaches to the interpretation of the results of food-effect bioavailability studies, and to bringing medicinal products to the global pharmaceutical market.

About the Author

N. N. Eremenko
Scientific Centre for Expert Evaluation of Medicinal Products; I.M. Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Natalia N. Eremenko, Cand. Sci. (Med.), Associate Professor

8/2 Petrovsky Blvd, Moscow 127051;
8/2 Trubetskaya St., Moscow 119991



References

1. Yasuhiro, Tsume, Evaluation and prediction of oral drug absorption and bioequivalence with food-druginteraction.. Drug Metabolism and Pharmacokinetics, Volume 50, 2023, https://doi.org/10.1016/j.dmpk.2023.100502.

2. Mullertz A. Food effects on drug absorption and dosage form performance. In: Dressman JB, Reppas C, eds. Oral Drug Absorption: Prediction and Assessment, 2nd edn. Boca Raton, FL: CRC Press, 2010: 90–107.

3. Singh BN. A quantitative approach to probe the dependence and correlation of food-effect with aqueous solubility, dose/solubility ratio, and partition coefficient (Log P) for orally active drugs administered as immediate-release formulations. Drug Dev Res 2005; 2: 55–75.

4. https://doi.org/ 10.1002/ddr.20008.

5. Gu CH, Li H, Levons J, Lentz K, Gandhi RB, Raghavan K, et al. Predicting effect of food on extent of drug absorption based on physicochemical properties. Pharm Res. 2007 Jun;24(6):1118-30.

6. https://doi.org/10.1007/s11095-007-9236-1.

7. Varum FJ, Hatton GB, Basit AW. Food, physiology and drug delivery. Int J Pharm. 2013 Dec 5;457(2):446-60.

8. https://doi.org/10.1016/j.ijpharm.2013.04.034.

9. Yasuji T, Kondo H, Sako K. The effect of food on the oral bioavailability of drugs: a review of current developments and pharmaceutical technologies for pharmacokinetic control. Ther Deliv. 2012 Jan;3(1):81-90.

10. https://doi.org/10.4155/tde.11.142.

11. Abuhelwa AY, Williams DB, Upton RN, Foster DJ. Food, gastrointestinal pH, and models of oral drug absorption. Eur J Pharm Biopharm. 2017 Mar;112:234-248.

12. https://doi.org/10.1016/j.ejpb.2016.11.034.

13. McLauchlan G, Fullarton GM, Crean GP, McColl KE. Comparison of gastric body and antral pH: a 24 hour ambulatory study in healthy volunteers. Gut. 1989 May;30(5):573-8. https://doi.org/10.1136/gut.30.5.573.

14. Simonian HP, Vo L, Doma S, Fisher RS, Parkman HP. Regional postprandial differences in pH within the stomach and gastroesophageal junction. Dig Dis Sci. 2005 Dec;50(12):2276-85.

15. https://doi.org/10.1007/s10620-005-3048-0.

16. Abuhelwa AY, Foster DJR, Upton RN. A Quantitative Review and Meta-Models of the Variability and Factors Affecting Oral Drug Absorption-Part I: Gastrointestinal pH. AAPS J. 2016 Sep;18(5):1309-1321.

17. https://doi.org/10.1208/s12248-016-9952-8.

18. Deng J, Zhu X, Chen Z, Fan CH, Kwan HS, Wong CH, et al. A Review of Food-Drug Interactions on Oral Drug Absorption. Drugs. 2017 Nov;77(17):1833-1855.

19. https://doi.org/10.1007/s40265-017-0832-z.

20. Zhou, Zhu., Venugopal, P., Marasanapalle., Xiaoling, Li., Bhaskara, Jasti. Effects of Food on Drug Absorption, 2023

21. https://doi.org/10.1002/9781119660699.ch10.

22. Cheng L, Wong H. Food Effects on Oral Drug Absorption: Application of Physiologically-Based Pharmacokinetic Modeling as a Predictive Tool. Pharmaceutics. 2020 Jul 17;12(7):672.

23. https://doi.org/10.3390/PHARMACEUTICS12070672.

24. Lawless, E., Griffin, B.T., O’Mahony, A. et al. Exploring the Impact of Drug Properties on the Extent of Intestinal Lymphatic Transport - In Vitro and In Vivo Studies. Pharm Res 32, 2015,1817–1829.

25. https://doi.org/10.1007/s11095-014-1578-x

26. Schiller C, Fröhlich CP, Giessmann T, Siegmund W, Mönnikes H, Hosten N, et al. Intestinal fluid volumes and transit of dosage forms as assessed by magnetic resonance imaging. Aliment Pharmacol Ther. 2005 Nov 15;22(10):971-9.

27. https://doi.org/10.1111/j.1365-2036.2005.02683.x.

28. Kalantzi L, Goumas K, Kalioras V, Abrahamsson B, Dressman JB, Reppas C. Characterization of the human upper gastrointestinal contents under conditions simulating bioavailability/bioequivalence studies. Pharm Res. 2006 Jan;23(1):165-76.

29. https://doi.org/10.1007/s11095-005-8476-1..

30. Koziolek M, Grimm M, Garbacz G, Kühn JP, Weitschies W. Intragastric volume changes after intake of a high-caloric, high-fat standard breakfast in healthy human subjects investigated by MRI. Mol Pharm. 2014 May 5;11(5):1632-9.

31. https://doi.org/10.1021/mp500022u.

32. Koziolek M, Grimm M, Schneider F, Jedamzik P, Sager M, Kühn JP, et al. Navigating the human gastrointestinal tract for oral drug delivery: Uncharted waters and new frontiers. Adv Drug Deliv Rev. 2016 Jun 1;101:75-88.

33. https://doi.org/doi: 10.1016/j.addr.2016.03.009.

34. Radwan A, Wagner M, Amidon GL, Langguth P. Bio-predictive tablet disintegration: effect of water diffusivity, fluid flow, food composition and test conditions. Eur J Pharm Sci. 2014 Jun 16;57:273-9.

35. https://doi.org/10.1016/j.ejps.2013.08.038.

36. Yildiz HM, Speciner L, Ozdemir C, Cohen DE, Carrier RL. Food-associated stimuli enhance barrier properties of gastrointestinal mucus. Biomaterials. 2015 Jun;54:1-8.

37. https://doi.org/10.1016/j.biomaterials.2015.02.118.

38. Radwan A, Amidon GL, Langguth P. Mechanistic investigation of food effect on disintegration and dissolution of BCS class III compound solid formulations: the importance of viscosity. Biopharm Drug Dispos. 2012 Oct;33(7):403-16.

39. https://doi.org/10.1002/bdd.1798.

40. Radwan A, Ebert S, Amar A, Münnemann K, Wagner M, Amidon GL, et al. Mechanistic understanding of food effects: water diffusivity in gastrointestinal tract is an important parameter for the prediction of disintegration of solid oral dosage forms. Mol Pharm. 2013 Jun 3;10(6):2283-90.

41. https://doi.org/10.1021/mp3006209.

42. Radwan A, Zaid AN, Jaradat N, Odeh Y. Food effect: The combined effect of media pH and viscosity on the gastrointestinal absorption of ciprofloxacin tablet. Eur J Pharm Sci. 2017 Apr 1;101:100-106.

43. https://doi.org/10.1016/j.ejps.2017.01.030.

44. Schmidt LE, Dalhoff K. Food-drug interactions. Drugs. 2002;62(10):1481-502.

45. https://doi.org/10.2165/00003495-200262100-00005.

46. Camilleri M. Integrated upper gastrointestinal response to food intake. Gastroenterology. 2006 Aug;131(2):640-58.

47. https://doi.org/10.1053/j.gastro.2006.03.023.

48. Clarysse S, Psachoulias D, Brouwers J, Tack J, Annaert P, Duchateau G, et al. Postprandial changes in solubilizing capacity of human intestinal fluids for BCS class II drugs. Pharm Res. 2009 Jun;26(6):1456-66.

49. https://doi.org/10.1007/s11095-009-9857-7.

50. Clarysse S, Tack J, Lammert F, Duchateau G, Reppas C, Augustijns P. Postprandial evolution in composition and characteristics of human duodenal fluids in different nutritional states. J Pharm Sci. 2009 Mar;98(3):1177-92.

51. https://doi.org/10.1002/jps.21502.

52. Di Maio S, Carrier RL. Gastrointestinal contents in fasted state and post-lipid ingestion: in vivo measurements and in vitro models for studying oral drug delivery. J Control Release. 2011 Apr 30;151(2):110-22.

53. https://doi.org/10.1016/j.jconrel.2010.11.034.

54. Hunt JN, Stubbs DF. The volume and energy content of meals as determinants of gastric emptying. J Physiol. 1975 Feb;245(1):209-25.

55. https://doi.org/10.1113/jphysiol.1975.sp010841.

56. Siegel J A, Urbain J L, Adler L P, Charkes N D, Maurer A H, Krevsky B, et al. Biphasic nature of gastric emptying. Gut 1988; 1: 85–89.

57. https://doi.org/10.1136/gut.29.1.85

58. Oberle RL, Chen TS, Lloyd C, Barnett JL, Owyang C, Meyer J, et al/ The influence of the interdigestive migrating myoelectric complex on the gastric emptying of liquids. Gastroenterology. 1990 Nov;99(5):1275-82.

59. https://doi.org/10.1016/0016-5085(90)91150-5.

60. Mudie DM, Murray K, Hoad CL, Pritchard SE, Garnett MC, Amidon GL, Gowland PA, Spiller RC, Amidon GE, Marciani L. Quantification of gastrointestinal liquid volumes and distribution following a 240 mL dose of water in the fasted state. Mol Pharm. 2014 Sep 2;11(9):3039-47.

61. https://doi.org/10.1021/mp500210c.

62. Sunesen VH, Vedelsdal R, Kristensen HG, Christrup L, Müllertz A. Effect of liquid volume and food intake on the absolute bioavailability of danazol, a poorly soluble drug. Eur J Pharm Sci. 2005 Mar;24(4):297-303.

63. https://doi.org/10.1016/j.ejps.2004.11.005.

64. Stotzer PO, Abrahamsson H. Human postprandial gastric emptying of indigestible solids can occur unrelated to antral phase III. Neurogastroenterol Motil. 2000 Oct;12(5):415-9. https://doi.org/10.1046/j.1365-2982.2000.00218.x.

65. Fadda HM, McConnell EL, Short MD, Basit AW. Meal-induced acceleration of tablet transit through the human small intestine. Pharm Res. 2009 Feb;26(2):356-60.

66. https://doi.org/10.1007/s11095-008-9749-2.

67. Davis S S, Hardy J G, Fara J W Transit of pharmaceutical dosage forms through the small intestine. Gut 1986; 8: 886–892.

68. https://doi.org/10.1136/gut.27.8.886

69. Suryanarayana Polaka, Kuldeep Rajpoot, Muktika Tekade, Mukesh Chandra Sharma, Rakesh K. Tekade. Food–drug interactions and their implications on oral drug bioavailability. In book: Pharmacokinetics and Toxicokinetic Considerations (pp.263-289)

70. https://doi.org/10.1016/b978-0-323-98367-9.00002-0

71. Won CS, Oberlies NH, Paine MF. Mechanisms underlying food-drug interactions: inhibition of intestinal metabolism and transport. Pharmacol Ther. 2012 Nov;136(2):186-201.

72. https://doi.org/10.1016/j.pharmthera.2012.08.001.

73. Gibbs MA, Hosea NA. Factors affecting the clinical development of cytochrome p450 3A substrates. Clin Pharmacokinet. 2003;42(11):969-84.

74. https://doi.org/10.2165/00003088-200342110-00003.

75. Custodio JM, Wu CY, Benet LZ. Predicting drug disposition, absorption/elimination/transporter interplay and the role of food on drug absorption. Adv Drug Deliv Rev. 2008 Mar 17;60(6):717-33.

76. https://doi.org/10.1016/j.addr.2007.08.043.

77. Giovanni Bocci, Tudor I. Oprea, Leslie Z. Benet. State of the Art and Uses for the Biopharmaceutics Drug Disposition Classification System (BDDCS): New Additions, Revisions, and Citation References. Aaps Journal, 2022, Volume 24, 37. https://doi.org/10.1208/s12248-022-00687-0

78. Liu XI, van den Anker JN, Burckart GJ, Dallmann A. Evaluation of Physiologically Based Pharmacokinetic Models to Predict the Absorption of BCS Class I Drugs in Different Pediatric Age Groups. J Clin Pharmacol. 2021 Jun;61 Suppl 1:S94-S107.

79. https://doi.org/10.1002/jcph.1845. PMID: 34185902.

80. Miyake M, Oka Y, Mukai T. Food effect on meal administration time of pharmacokinetic profile of cilostazol, a BCS class II drug. Xenobiotica. 2020 Feb;50(2):145-149.

81. https://doi.org/10.1080/00498254.2019.1602746.

82. Himawan A, Djide NJN, Mardikasari SA, Utami RN, Arjuna A, Donnelly RF, et al. A novel in vitro approach to investigate the effect of food intake on release profile of valsartan in solid dispersion-floating gel in-situ delivery system. Eur J Pharm Sci. 2022 Jan 1;168:106057.

83. https://doi.org/10.1016/j.ejps.2021.106057.

84. Silva TMD, Honorio TDS, Chaves MHDC, Duque MD, Cabral LM, Patricio BFC, et al. In silico bioavailability for BCS class II efavirenz tablets using biorelevant dissolution media for IVIVR and simulation of formulation changes. Drug Dev Ind Pharm. 2021 Aug;47(8):1342-1352.

85. https://doi.org/10.1080/03639045.2021.1991368.

86. Milica Markovic, Moran Zur, Inna Ragatsky, Sandra Cvijić, Arik Dahan. BCS Class IV Oral Drugs and Absorption Windows: Regional-Dependent Intestinal Permeability of Furosemide. Pharmaceutics, 2020,12(12):1175

87. https://doi.org/10.3390/PHARMACEUTICS12121175

88. Li J, Larregieu CA, Benet LZ. Classification of natural products as sources of drugs according to the biopharmaceutics drug disposition classification system (BDDCS). Chin J Nat Med. 2016 Dec;14(12):888-897.

89. https://doi.org/10.1016/S1875-5364(17)30013-4.

90. Sheena Sharma, Clark Kogan, Manthena V.S. Varma, Bhagwat Prasad. Analysis of the interplay of physiological response to food intake and drug properties in food-drug interactions. Drug Metabolism and Pharmacokinetics, 2023.

91. https://doi.org/10.1016/j.dmpk.2023.100518

92. Benet Leslie Z, Solubility-Permeability Interplay in Facilitating the Prediction of Drug Disposition Routes, Extent of Absorption, Food Effects, Brain Penetration and Drug Induced Liver Injury Potential. Journal of Pharmaceutical Sciences, 2023, Volume 112, Issue 9, 2326 – 2331

93. https://doi.org/10.1016/j.xphs.2023.07.006

94. Jia X, Chen J, Cheng H, Pan X, Ke Y, Fu T, et al. Use of surfactant-based amorphous solid dispersions for BDDCS class II drugs to enhance oral bioavailability: A case report of resveratrol. Int J Pharm. 2023 Jun 25;641:123059.

95. https://doi.org/10.1016/j.ijpharm.2023.123059.

96. Drug-nutrition interactions. (2023).79-92.

97. https://doi.org/10.1016/b978-0-12-821848-8.00012-3

98. Hetal Patel, Ayushi V. Vasandia, Rahul Jha, Bhargavi V. Desai, Ditixa T. Desai, Praful P. Dedhiya., et al. Intranasal delivery of doxepin: enhancing brain targeting efficiency utilizing nanostructured lipid carriers for a biopharmaceutics drug disposition classification system class-I drug. Pharmaceutical Development and Technology, 2024.

99. https://doi.org/10.1080/10837450.2024.2376102

100. Pooja, R., Ashok, Kumar, P., Manjunath, K., Darshan, A. Formulation and evaluation of doxepin hydrochloride by fast dissolving buccal film. World Journal Of Advanced Research and Reviews, 2022,16.

101. https://doi.org/10.30574/wjarr.2022.16.1.0946

102. Devendra, Singh., Pankaj, Kumar, Sharma., Udai, Vir, Singh, Sara. Enhancement of intestinal absorption of poorly absorbed drugs by using various permeation enhancers: an overview. (2013).

103. Maiara Camotti Montanha, Bart Hens. Oral Drug Absorption in Special Populations. In book: The Art and Science of Physiologically-Based Pharmacokinetics Modeling, 2024, p.356

104. https://doi.org/10.1201/9781003031802-3

105. Stillhart C, Vučićević K, Augustijns P, Basit AW, Batchelor H, Flanagan TR, et al. Impact of gastrointestinal physiology on drug absorption in special populations--An UNGAP review. Eur J Pharm Sci. 2020 Apr 30;147:105280.

106. https://doi.org/10.1016/j.ejps.2020.105280.

107. Malm-Erjefält M, Ekblom M, Vouis J, Zdravkovic M, Lennernäs H. Effect on the Gastrointestinal Absorption of Drugs from Different Classes in the Biopharmaceutics Classification System, When Treating with Liraglutide. Mol Pharm. 2015 Nov 2;12(11):4166-73.

108. https://doi.org/10.1021/acs.molpharmaceut.5b00278.

109. Poli G, Bologna E, Saguy IS. Possible interactions between selected food processing and medications. Front Nutr. 2024 Apr 12;11:1380010.

110. https://doi.org/10.3389/fnut.2024.1380010.

111. Nishitkumar Patel, Jimesh Shah, Amit A. Patel., Ravish J. Patel. Bioequivalence requirements of Pharmaceutical Products in US, Europe and Australia. International journal of drug regulatory affairs, 2022, 10 (2): 56-61.

112. https://doi.org/10.22270/ijdra.v10i2.524

113. Hyun-Ok Seo, So-Hee Kim, Mee-Ryung Ahn, Choong-Yul Ahn, Hye-Jin Park, Eun-Kyung Oh, et al. Guideline for Bioequivalence Studies of Controlled Release Products. Journal of Korean Pharmaceutical Sciences, 2010 (40), 1,63-66.

114. https://doi.org/10.4333/KPS.2010.40.1.063

115. Sahu, G., K.., Gupta, C.. (2023). 3. Exploration of Solubilization Strategies: Enhancing Bioavailability for Low Solubility Drugs. International Journal of Newgen Research in Pharmacy & Healthcare, Dec 2023, Vol-1, Issue 2., 96-115.

116. https://doi.org/doi: 10.61554/ijnrph.v1i2.2023.50

117. Krishna R. Gupta, Monali R. Dakhole, Ketki S. Jinnawar, Milind J. Umekar. Strategies for improving hydrophobic drugs solubility and bioavailability. International journal of pharmaceutical chemistry and analysis, 2023, 10(3): 164-174.

118. https://doi.org/10.18231/j.ijpca.2023.029

119. Zeren Wang, Chandan Bhugra, She Chen. Formulation Approaches to Improve Oral Bioavailability of Drugs. In book: Oral Bioavailability and Drug Delivery: From Basics to Advanced Concepts and Applications, 2023

120. https://doi.org/10.1002/9781119660699.ch28

121. Bhalani, D.V.; Nutan, B; Kumar, A.; Singh Chandel, A.K. Bioavailability Enhancement Techniques for Poorly Aqueous Soluble Drugs and Therapeutics. Biomedicines 2022, 10, 2055.

122. https://doi.org/10.3390/ biomedicines10092055

123. Imdad Husen Mukeri, M. Sunitha Reddy. Approaches to Improve bioavailability and oral absorption of low water-soluble drug by self- emulsifying drug delivery system. GSC biological and pharmaceutical sciences, 2023, 22(01), 215-229.

124. https://doi.org/10.30574/gscbps.2023.22.1.0034

125. Kutner A. Recent advances in drug substance development – prodrug strategies for enhancing the bioavailability and potency of antiviral nucleosides. Journal of Medical Science, 2023; 93 (3),e878.

126. https://doi.org/10.20883/medical.e878

127. Dash JR, Pattnaik G, Samal HB, Pradhan G, Baral CPK, Behera B, Kar B. roaches for the Enhancement of Bioavailability of Drugs: An Updated Review. Curr Drug Discov Technol. 2024 Aug 9.

128. https://doi.org/10.2174/0115701638311058240806100555..

129. Rocha B, de Morais LA, Viana MC, Carneiro G. Promising strategies for improving oral bioavailability of poor water-soluble drugs. Expert Opin Drug Discov. 2023 Jun;18(6):615-627.

130. https://doi.org/10.1080/17460441.2023.2211801.

131. Francisco Javier Otero Espinar, Carlos Bendicho Lavilla., Guillermo Blanco Fernández, Victoria Díaz Tomé, Xurxo García Otero. Formulation strategies to improve the bioavailability of poorly absorbed drugs. In book: Dosage Forms, Formulation Developments and Regulations Recent and Future Trends in Pharmaceutics, Volume 1, (2024).223-255.

132. https://doi.org/10.1016/b978-0-323-91817-6.00008-5

133. Marroum PJ, Nuthalapati S, Parikh A, Shebley M, Hoffman D, Zha J, et al. Industry Perspective on Standardizing Food-Effect Studies for New Drug Development. Clin Pharmacokinet. 2018 Aug;57(8):901-909.

134. https://doi.org/10.1007/s40262-018-0630-0. PMID: 29460023.


Supplementary files

1. Tables 1, 2
Subject
Type Исследовательские инструменты
Download (262KB)    
Indexing metadata ▾

Review

For citations:


Eremenko N.N. Effects of Food on the Bioavailability of Medicinal Products in Bioequivalence Studies: A Comparative Analysis of Regulatory Documents. Safety and Risk of Pharmacotherapy. 2025;13(1):86-93. (In Russ.) https://doi.org/10.30895/2312-7821-2025-13-1-86-93

Views: 628


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2312-7821 (Print)
ISSN 2619-1164 (Online)