Preview

Safety and Risk of Pharmacotherapy

Advanced search

Circulating MicroRNAs Are Promising Biomarkers for Assessing the Risk of Antipsychotic-Induced Metabolic Syndrome (Review): Part 1

https://doi.org/10.30895/2312-7821-2025-478

Abstract

INTRODUCTION. Antipsychotic-induced metabolic syndrome (AIMetS) is a common adverse reaction to the pharmacotherapy of psychiatric and addiction disorders. However, interindividual variability in the metabolism of antipsychotics may limit the sensitivity and specificity of known blood-based biochemical biomarkers of AIMetS for assessing the safety of psychopharmacotherapy and the risk of AIMetS in patients with schizophrenia spectrum disorders. In recent years, circulating microRNAs have been considered as new and promising epigenetic biomarkers of AIMetS.

AIM. This study aimed to evaluate the potential of circulating microRNAs as epigenetic biomarkers for the prediction and early diagnosis of AIMetS.

DISCUSSION. The authors analysed the results of academic and clinical research published from 2012 to 2024 with a focus on the role of circulating microRNAs involved in the key AIMetS pathogenesis and progression pathways. This review presents novel international approaches to using primary and additional clinical and biochemical biomarkers of AIMetS and demonstrates the advantages of microRNAs as epigenetic biomarkers of AIMetS. The article summarises data on the roles of microRNAs in the mechanisms of AIMetS development (oxidative stress, systemic inflammation, adipocyte differentiation, lipid and glucose metabolism, appetite regulation, and changes in neuropeptide Y and orexin expression, leptin sensitivity, and testosterone, thyroid and parathyroid hormone levels).

CONCLUSIONS. Detecting changes in the expression of circulating microRNAs in easily accessible samples (blood, saliva, urine, etc.) is a promising alternative method for predicting and diagnosing AIMetS. The second part of this review will explore the role of circulating microRNAs as epigenetic biomarkers for developing the main manifestations of MetS and AIMetS and will classify microRNA signatures according to the risk of developing AIMetS.

About the Authors

N. A. Shnayder
Institute of Personalized Psychiatry and Neurology, V.M. Bekhterev National Medical Research Center for Psychiatry and Neurology; Shared Core Facilities “Molecular and Cell Technologies”, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University
Russian Federation

Natalia А. Shnayder, Dr. Sci. (Med.), Professor

3 Bekhterev St., St Petersburg 192019; 
1 Partisan Zheleznyak St., Krasnoyarsk 660022



R. F. Nasyrova
Institute of Personalized Psychiatry and Neurology, V.M. Bekhterev National Medical Research Center for Psychiatry and Neurology; Tula State University
Russian Federation

Regina F. Nasyrova, Dr. Sci. (Med.)

3 Bekhterev St., St Petersburg 192019; 
92 Lenin Ave, Tula 300012



N. A. Pekarets
Institute of Personalized Psychiatry and Neurology, V.M. Bekhterev National Medical Research Center for Psychiatry and Neurology
Russian Federation

Nikolai A. Pekarets

3 Bekhterev St., St Petersburg 192019



V. V. Grechkina
Institute of Personalized Psychiatry and Neurology, V.M. Bekhterev National Medical Research Center for Psychiatry and Neurology
Russian Federation

Violetta V. Grechkina

3 Bekhterev St., St Petersburg 192019



M. M. Petrova
Shared Core Facilities “Molecular and Cell Technologies”, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University
Russian Federation

Marina M. Petrova, Dr. Sci. (Med.), Professor

1 Partisan Zheleznyak St., Krasnoyarsk 660022



References

1. Pillinger T, McCutcheon RA, Vano L, Mizuno Y, Arumuham A, Hindley G, et al. Comparative effects of 18 antipsychotics on metabolic function in patients with schizophrenia, predictors of metabolic dysregulation, and association with psychopathology: A systematic review and network meta-analysis. Lancet Psychiatry. 2020;7(1):64–77. https://doi.org/10.1016/S2215-0366(19)30416-X

2. Shpilevskaya YR, Shtonda MV. Metabolic syndrome: The modern aspects of diagnostic and treatment. Medical News. 2021;(5):4– 8 (In Russ.). EDN: HCJBZE

3. Ferrari CKB. Chapter 6. Epidemiology of metabolic syndrome: Global scenario. In: Mukhopadhyay S, Mondal S, eds. Metabolic syndrome: From mechanisms to interventions. Academic Press; 2024. P. 59–71. https://www.doi.org/10.1016/B978-0-323-85732-1.00038-4

4. Li W, Qiu X, Ma H, Geng Q. Incidence and long-term specific mortality trends of metabolic syndrome in the United States. Front Endocrinol (Lausanne). 2023;13:1029736. https://www.doi.org/10.3389/fendo.2022.1029736

5. Chong KS, Chang YH, Yang CT, Chou CK, Ou HT, Kuo S. Longitudinal economic burden of incident complications among metabolic syndrome populations. Cardiovasc Diabetol. 2024;23(1):246.

6. Akinola PS, Tardif I, Leclerc J. Antipsychotic-induced metabolic syndrome: A review. Metab Syndr Relat Disord. 2023;21(6):294–305. https://doi.org/10.1089/met.2023.0003

7. Penninx BWJH, Lange SMM. Metabolic syndrome in psychiatric patients: Overview, mechanisms, and implications. Dialog Clin Neurosci. 2018;20(1):63–73. https://doi.org/10.31887/DCNS.2018.20.1/bpenninx

8. Libowitz MR, Nurmi EL. The burden of antipsychotic-induced weight gain and metabolic syndrome in children. Front Psychiatry. 2021;12:623681. https://doi.org/10.3389/fpsyt.2021.623681

9. Correll CU, Manu P, Olshanskiy V, Napolitano B, Kane JM, Malhotra AK. Cardiometabolic risk of second-generation antipsychotic medications during first-time use in children and adolescents. JAMA. 2009;302(16):1765–73. https://doi.org/10.1001/jama.2009.1549

10. Keepers GA, Fochtmann LJ, Anzia JM, Benjamin S, Lyness JM, Mojtabai R, et al. The American Psychiatric Association Practice Guideline for the treatment of patients with schizophrenia. Am J Psychiatry. 2020;177(9):868–72. https://doi.org/10.1176/appi.ajp.2020.177901

11. Bernardo M, Rico-Villademoros F, García-Rizo C, Rojo R, Gómez-Huelgas R. Real-world data on the adverse metabolic effects of second-generation antipsychotics and their potential determinants in adult patients: A systematic review of population-based studies. Adv Ther. 2021;38(5):2491–512. https://doi.org/10.1007/s12325-021-01689-8

12. Limankin OV. Personalized psychiatry: Achievements and prospects. Personalized Psychiatry and Neurology. 2021;1(2):126–7. https://doi.org/10.52667/2712-9179-2021-1-2-126-127

13. Castellani LN, Costa-Dookhan KA, McIntyre W B, Wright DC, Flowers SA, Hahn MK, Ward KM. Preclinical and clinical sex differences in antipsychotic-induced metabolic disturbances: A narrative review of adiposity and glucose metabolism. J Psychiatr Brain Sci. 2019;4:e190013. https://doi.org/10.20900/jpbs.20190013

14. Khasanova AK, Dobrodeeva VS, Shnayder NA, Petrova MM, Pronina EA, Bochanova EN, et al. Blood and urinary biomarkers of anti psychotic-induced metabolic syndrome. Metabolites. 2022;12(8):726. https://doi.org/10.3390/metabo12080726

15. Mironova OI, Berdysheva MV, Elfimova EM. MicroRNA: A clinician’s view of the state of the problem. Part 2. MicroRNA as a biomarker. Eurasian Heart Journal. 2023;(2):64–71 (In Russ.). https://doi.org/10.38109/2225-1685-2023-2-64-71

16. Dexheimer PJ, Cochella L. MicroRNAs: From mechanism to orga nism. Front Cell Dev Biol. 2020;8:409. https://www.doi.org/10.3389/fcell.2020.00409

17. Pozniak T, Shcharbin D, Bryszewska M. Circulating microRNAs in medicine. Int J Mol Sci. 2022;23(7):3996. https://www.doi.org/10.3390/ijms23073996

18. Gayoso-Diz P, Otero-González A, Rodriguez-Alvarez MX, Gude F, García F, De Francisco A, Quintela AG. Insulin resistance (HOMA-IR) cut-off values and the metabolic syndrome in a general adult population: Effect of gender and age: EPIRCE cross-sectional study. BMC Endocr Disord. 2013;13:47. https://doi.org/10.1186/1472-6823-13-47

19. Karpel’ev VA, Filippov YI, Tarasov YV, Boyarsky MD, Mayorov AY, Shestakova MV, Dedov II. Mathematical modeling of the blood glucose regulation system in diabetes mellitus patients. Annals of the Russian Academy of Medical Sciences. 2015;70(5):549–60 (In Russ.). https://doi.org/10.15690/vramn.v70.i5.1441

20. Bethesda M. Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework. Clin Pharmacol Ther. 2001;69(3):89–95. https://doi.org/10.1067/mcp.2001.113989

21. Vulf MA, Shunkina (Skuratovskaia) DA, Hung V, Komar AA, Zatolokin PA, Kirienkova EV, et al. Chemerin as a potential regulator of mitochondrial quality control in obese patients. Medical Immunology (Russia). 2021;23(4):881–6 (In Russ.). https://doi.org/10.15789/1563-0625-CAA-2227

22. Behnoush AH, Shobeiri P, Bahiraie P, Amirkhani N, Khalaji A, Peiman S. Chemerin levels in chronic kidney disease: A systematic review and meta-analysis. Front Endocrinol (Lausanne). 2023;14:1120774. https://www.doi.org/10.3389/fendo.2023.1120774

23. Alieva AM, Teplova NV, Reznik EV, Baikova IE, Makeeva LM, Kotikova IA, et al. Diagnostic and prognostic aspects of omentin in cardiovascular diseases. Russian Cardiology Bulletin. 2024;19(1):16–22 (In Russ.). https://doi.org/10.17116/Cardiobulletin20241901116

24. Pobozheva IA, Panteleeva AA, Polyakova EA, Dracheva KV, Razgildina ND, Galkina OV, et al. Subcutaneous adipose tissue omentin-1 in coronary artery disease patients. Medical Genetics. 2020;19(11):21–30 (In Russ.). https://doi.org/10.25557/2073-7998.2020.11.21-30

25. Lorente L, Martín MM, Varo N, Borreguero-León JM, Solé-Violán J, Blanquer J, et al. Association between serum soluble CD40 ligand levels and mortality in patients with severe sepsis. Crit Care. 2011;15(2):R97. https://www.doi.org/10.1186/cc10104

26. Wang MN, Han YB, Li Q, Guo L, Yang YM, Wang W, Zhang JC. Higher serum retinol binding protein 4 may be a predictor of weak metabolic control in Chinese patients with type 2 diabetes mellitus. J Int Med Res. 2012;40(4):1317–24. https://www.doi.org/10.1177/147323001204000410

27. Brandão-Lima PN, de Carvalho GB, Payolla TB, Sarti FM, Fisberg RM, Malcomson FC, et al. Circulating microRNAs showed specific responses according to metabolic syndrome components and sex of adults from a population-based study. Metabolites. 2022;13(1):2. https://www.doi.org/10.3390/metabo13010002

28. Solís-Toro D, Mosquera Escudero M, García-Perdomo HA. Association between circulating microRNAs and the metabolic syndrome in adult populations: A systematic review. Diabetes Metab Syndr. 2022;16(1):102376. https://www.doi.org/10.1016/j.dsx.2021.102376

29. Xavier G, Mauer J, Ota VK, Santoro ML, Belangero SI. Influence of antipsychotic drugs on microRNA expression in schizophrenia patients — a systematic review. J Psychiatr Res. 2024;176:163–72. https://doi.org/10.1016/j.jpsychires.2024.06.010

30. García-Giménez JL, Seco-Cervera M, Tollefsbol TO, Romá-Mateo C, Peiró-Chova L, Lapunzina P, Pallardó FV. Epigenetic biomarkers: Current strategies and future challenges for their use in the clinical laboratory. Crit Rev Clin Lab Sci. 2017;54(7–8):529–50. https://doi.org/10.1080/10408363.2017.1410520

31. Neznanov NG. A paradigm shift to treat psychoneurological disorders. Personalized Psychiatry and Neurology. 2021;1(1):1–2.

32. O’Brien J, Hayder H, Zayed Y, Peng C. Overview of MicroRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne). 2018;9:402. https://www.doi.org/10.3389/fendo.2018.00402

33. Saha S. Role of microRNA in oxidative stress. Stresses. 2024;4(2):269–81. https://doi.org/10.3390/stresses4020016

34. Włodarski A, Strycharz J, Wróblewski A, Kasznicki J, Drzewoski J, Śliwińska A. The role of microRNAs in metabolic syndrome-related oxidative stress. Int J Mol Sci. 2020;21(18):6902. https://www.doi.org/10.3390/ijms21186902

35. Carvalho GB, Brandão-Lima PN, Payolla TB, Lucena SEF, Sarti FM, Fisberg RM, Rogero MM. Circulating miRNAs are associated with low-grade systemic inflammation and leptin levels in older adults. Inflammation. 2023;46(6):2132–46. https://www.doi.org/10.1007/s10753-023-01867-6

36. Das K, Rao LVM. The role of microRNAs in inflammation. Int J Mol Sci. 2022;23(24):15479. https://www.doi.org/10.3390/ijms232415479

37. Engin AB, Engin A. Adipogenesis-related microRNAs in obesity. ExRNA. 2022;4:16. https://www.doi.org/10.21037/exrna-22-4

38. Agbu P, Carthew RW. MicroRNA-mediated regulation of glucose and lipid metabolism. Nat Rev Mol Cell Biol. 2021;22(6):425–38. https://www.doi.org/10.1038/s41580-021-00354-w

39. Dong M, Ye Y, Chen Z, Xiao T, Liu W, Hu F. MicroRNA 182 is a novel negative regulator of adipogenesis by targeting CCAAT/enhancer-binding protein α. Obesity (Silver Spring). 2020;28(8):1467–76. https://doi.org/10.1002/oby.22863

40. Wagschal A, Najafi-Shoushtari SH, Wang L, Goedeke L, Sinha S, deLemos AS, et al. Genome-wide identification of microRNAs regulating cholesterol and triglyceride homeostasis. Nat Med. 2015;21(11):1290–7. https://www.doi.org/10.1038/nm.3980

41. Cheng J, Cheng A, Clifford BL, Wu X, Hedin U, Maegdefessel L, et al. MicroRNA-144 silencing protects against atherosclerosis in male, but not female mice. Arterioscler Thromb Vasc Biol. 2020;40(2):412–25. https://www.doi.org/10.1161/ATVBAHA.119.313633

42. Irani S, Iqbal J, Antoni WJ, Ijaz L, Hussain MM. MicroRNA-30c reduces plasma cholesterol in homozygous familial hypercholesterolemic and type 2 diabetic mouse models. J Lipid Res. 2018;59(1):144–54. https://doi.org/10.1194/jlr.M081299

43. Trajkovski M, Hausser J, Soutschek J, Bhat B, Akin A, Zavolan M, et al. MicroRNAs 103 and 107 regulate insulin sensitivity. Nature. 2011;474(7353):649–53. https://doi.org/10.1038/nature10112

44. Liu W, Cao H, Ye C, Chang C, Lu M, Jing Y, et al. Hepatic miR-378 targets p110α and controls glucose and lipid homeostasis by modulating hepatic insulin signalling. Nat Commun. 2014;5:5684. https://doi.org/10.1038/ncomms6684

45. Kornfeld JW, Baitzel C, Könner AC, Nicholls HT, Vogt MC, Herrmanns K, et al. Obesity-induced overexpression of miR-802 impairs glucose metabolism through silencing of Hnf1b. Nature. 2013;494(7435):111–5. https://doi.org/10.1038/nature11793

46. Xu H, Du X, Xu J, Zhang Y, Tian Y, Liu G, et al. Pancreatic β cell microRNA-26a alleviates type 2 diabetes by improving peripheral insulin sensitivity and preserving β cell function. PLoS Biol. 2020;18(2):e3000603. https://doi.org/10.1371/journal.pbio.3000603

47. Ofori JK, Salunkhe VA, Bagge A, Vishnu N, Nagao M, Mulder H, et al. Elevated miR-130a/miR130b/miR-152 expression reduces intracellular ATP levels in the pancreatic beta cell. Sci Rep. 2017;7:44986. https://doi.org/10.1038/srep44986

48. Belgardt BF, Ahmed K, Spranger M, Latreille M, Denzler R, Kondratiuk N, et al. The microRNA-200 family regulates pancreatic beta cell survival in type 2 diabetes. Nat Med. 2015;21(6):619–27. https://doi.org/10.1038/nm.3862

49. Zhang F, Ma D, Zhao W, Wang D, Liu T, Liu Y, et al. Obesity-induced overexpression of miR-802 impairs insulin transcription and secretion. Nat Commun. 2020;11(1):1822. https://doi.org/10.1038/s41467-020-15529-w

50. Melkman-Zehavi T, Oren R, Kredo-Russo S, Shapira T, Mandelbaum AD, Rivkin N, et al. miRNAs control insulin content in pancreatic β-cells via downregulation of transcriptional repressors. EMBO J. 2011;30(5):835–45. https://doi.org/10.1038/emboj.2010.361

51. Price NL, Fernández-Tussy P, Varela L, Cardelo MP, Shanabrough M, Aryal B, et al. microRNA-33 controls hunger signaling in hypothalamic AgRP neurons. Nat Commun. 2024;15(1):2131. https://www.doi.org/10.1038/s41467-024-46427-0

52. Taouis M. MicroRNAs in the hypothalamus. Best Pract Res Clin Endocrinol Metab. 2016;30(5):641–51. https://www.doi.org/10.1016/j.beem.2016.11.006

53. Zhang D, Yamaguchi S, Zhang X, Yang B, Kurooka N, Sugawara R, et al. Upregulation of mir342 in diet-induced obesity mouse and the hypothalamic appetite control. Front Endocrinol (Lausanne). 2021;12:727915. https://www.doi.org/10.3389/fendo.2021.727915

54. Sangiao-Alvarellos S, Pena-Bello L, Manfredi-Lozano M, Tena-Sempere M, Cordido F. Perturbation of hypothalamic microRNA expression patterns in male rats after metabolic distress: Impact of obesity and conditions of negative energy balance. Endocrinology. 2014;155(5):1838–50. https://www.doi.org/10.1210/en.2013-1770

55. Mak KWY, He W, Loganathan N, Belsham DD. Bisphenol A alters the levels of miRNAs that directly and/or indirectly target neuropeptide Y in murine hypothalamic neurons. Genes (Basel). 2023;14(9):1773. https://www.doi.org/10.3390/genes14091773

56. Derghal A, Djelloul M, Azzarelli M, Degonon S, Tourniaire F, Landrier JF, et al. MicroRNAs are involved in the hypothalamic leptin sensitivity. Epigenetics. 2018;13(10–11):1127–40. https://doi.org/10.1080/15592294.2018.1543507

57. Dobrodeeva VS, Abdyrahmanova AK, Nasyrova RF. Personalized approach to antipsychotic-induced weight gain prognosis. Personalized Psychiatry and Neurology. 2021;1(1):3–10. https://doi.org/10.52667/2712-9179-2021-1-1-3-10

58. Holm A, Possovre ML, Bandarabadi M, Moseholm KF, Justinussen JL, Bozic I, et al. The evolutionarily conserved miRNA-137 targets the neuropeptide hypocretin/orexin and modulates the wake to sleep ratio. Proc Natl Acad Sci USA. 2022;119(17):e2112225119. https://www.doi.org/10.1073/pnas.2112225119

59. Siegert S, Seo J, Kwon EJ, Rudenko A, Cho S, Wang W, et al. The schizophrenia risk gene product miR-137 alters presynaptic plasticity. Nat Neurosci. 2015;18(7):1008–16. https://www.doi.org/10.1038/nn.4023

60. Azhar S, Dong D, Shen WJ, Hu Z, Kraemer FB. The role of miRNAs in regulating adrenal and gonadal steroidogenesis. J Mol Endocrinol. 2020;64(1):R21–R43. https://www.doi.org/10.1530/JME-19-0105

61. Aranda A. MicroRNAs and thyroid hormone action. Mol Cell Endocrinol. 2021;525:111175. https://www.doi.org/10.1016/j.mce.2021.111175

62. Vaira V, Verdelli C, Forno I, Corbetta S. MicroRNAs in parathyroid physiopathology. Mol Cell Endocrinol. 2017;456:9–15. https://www.doi.org/10.1016/j.mce.2016.10.035

63. Martinez B, Peplow PV. MicroRNAs as potential biomarkers for diagnosis of schizophrenia and influence of antipsychotic treatment. Neural Regen Res. 2024;19(7):1523–31. https://doi.org/10.4103/1673-5374.387966

64. Zhang HC, Du Y, Chen L, Yuan ZQ, Cheng Y. MicroRNA schizophrenia: Etiology, biomarkers and therapeutic targets. Neurosci Biobehav Rev. 2023;146:105064. https://doi.org/10.1016/j.neubiorev.2023.105064

65. Zaki MB, Abulsoud AI, Ashraf A, Abdelmaksoud NM, Sallam AM, Aly SH, et al. The potential role of miRNAs in the pathogenesis of schizophrenia — a focus on signaling pathways interplay. Pathol Res Pract. 2024;254:155102. https://doi.org/10.1016/j.prp.2024.155102

66. Chan YL, Ho CSH, Tay GWN, Tan TWK, Tang TB. MicroRNA classification and discovery for major depressive disorder diagnosis: Towards a robust and interpretable machine learning approach. J Affect Disord. 2024;360:326–35. https://doi.org/10.1016/j.jad.2024.05.066

67. Ding R, Su D, Zhao Q, Wang Y, Wang JY, Lv S, Ji X. The role of microRNAs in depression. Front Pharmacol. 2023;14:1129186. https://doi.org/10.3389/fphar.2023.1129186

68. Elfaki I, Mir R, Mir MM, AbuDuhier FM, Babakr AT, Barnawi J. Potential impact of microRNA gene polymorphisms in the pathogenesis of diabetes and atherosclerotic cardiovascular disease. J Pers Med. 2019;9(4):51. https://doi.org/10.3390/jpm9040051

69. Gottmann P, Ouni M, Zellner L, Jähnert M, Rittig K, Walther D, et al. Polymorphisms in miRNA binding sites involved in metabolic diseases in mice and humans. Sci Rep 2020;10:7202. https://doi.org/10.1038/s41598-020-64326-4

70. Villanova F, Di Meglio P, Nestle FO. Biomarkers in psoriasis and psoriatic arthritis. Ann Rheum Dis. 2013;72(S2):ii104–10. https://doi.org/10.1136/annrheumdis-2012-203037


Supplementary files

1. Tables 1–2
Subject
Type Исследовательские инструменты
Download (187KB)    
Indexing metadata ▾

Review

For citations:


Shnayder N.A., Nasyrova R.F., Pekarets N.A., Grechkina V.V., Petrova M.M. Circulating MicroRNAs Are Promising Biomarkers for Assessing the Risk of Antipsychotic-Induced Metabolic Syndrome (Review): Part 1. Safety and Risk of Pharmacotherapy. (In Russ.) https://doi.org/10.30895/2312-7821-2025-478

Views: 145


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2312-7821 (Print)
ISSN 2619-1164 (Online)