Circulating MicroRNAs Are Promising Biomarkers for Assessing the Risk of Antipsychotic-Induced Metabolic Syndrome (Review): Part 1
https://doi.org/10.30895/2312-7821-2025-478
Abstract
INTRODUCTION. Antipsychotic-induced metabolic syndrome (AIMetS) is a common adverse reaction to the pharmacotherapy of psychiatric and addiction disorders. However, interindividual variability in the metabolism of antipsychotics may limit the sensitivity and specificity of known blood-based biochemical biomarkers of AIMetS for assessing the safety of psychopharmacotherapy and the risk of AIMetS in patients with schizophrenia spectrum disorders. In recent years, circulating microRNAs have been considered as new and promising epigenetic biomarkers of AIMetS.
AIM. This study aimed to evaluate the potential of circulating microRNAs as epigenetic biomarkers for the prediction and early diagnosis of AIMetS.
DISCUSSION. The authors analysed the results of academic and clinical research published from 2012 to 2024 with a focus on the role of circulating microRNAs involved in the key AIMetS pathogenesis and progression pathways. This review presents novel international approaches to using primary and additional clinical and biochemical biomarkers of AIMetS and demonstrates the advantages of microRNAs as epigenetic biomarkers of AIMetS. The article summarises data on the roles of microRNAs in the mechanisms of AIMetS development (oxidative stress, systemic inflammation, adipocyte differentiation, lipid and glucose metabolism, appetite regulation, and changes in neuropeptide Y and orexin expression, leptin sensitivity, and testosterone, thyroid and parathyroid hormone levels).
CONCLUSIONS. Detecting changes in the expression of circulating microRNAs in easily accessible samples (blood, saliva, urine, etc.) is a promising alternative method for predicting and diagnosing AIMetS. The second part of this review will explore the role of circulating microRNAs as epigenetic biomarkers for developing the main manifestations of MetS and AIMetS and will classify microRNA signatures according to the risk of developing AIMetS.
Keywords
About the Authors
N. A. ShnayderRussian Federation
Natalia А. Shnayder, Dr. Sci. (Med.), Professor
3 Bekhterev St., St Petersburg 192019;
1 Partisan Zheleznyak St., Krasnoyarsk 660022
R. F. Nasyrova
Russian Federation
Regina F. Nasyrova, Dr. Sci. (Med.)
3 Bekhterev St., St Petersburg 192019;
92 Lenin Ave, Tula 300012
N. A. Pekarets
Russian Federation
Nikolai A. Pekarets
3 Bekhterev St., St Petersburg 192019
V. V. Grechkina
Russian Federation
Violetta V. Grechkina
3 Bekhterev St., St Petersburg 192019
M. M. Petrova
Russian Federation
Marina M. Petrova, Dr. Sci. (Med.), Professor
1 Partisan Zheleznyak St., Krasnoyarsk 660022
References
1. Pillinger T, McCutcheon RA, Vano L, Mizuno Y, Arumuham A, Hindley G, et al. Comparative effects of 18 antipsychotics on metabolic function in patients with schizophrenia, predictors of metabolic dysregulation, and association with psychopathology: A systematic review and network meta-analysis. Lancet Psychiatry. 2020;7(1):64–77. https://doi.org/10.1016/S2215-0366(19)30416-X
2. Shpilevskaya YR, Shtonda MV. Metabolic syndrome: The modern aspects of diagnostic and treatment. Medical News. 2021;(5):4– 8 (In Russ.). EDN: HCJBZE
3. Ferrari CKB. Chapter 6. Epidemiology of metabolic syndrome: Global scenario. In: Mukhopadhyay S, Mondal S, eds. Metabolic syndrome: From mechanisms to interventions. Academic Press; 2024. P. 59–71. https://www.doi.org/10.1016/B978-0-323-85732-1.00038-4
4. Li W, Qiu X, Ma H, Geng Q. Incidence and long-term specific mortality trends of metabolic syndrome in the United States. Front Endocrinol (Lausanne). 2023;13:1029736. https://www.doi.org/10.3389/fendo.2022.1029736
5. Chong KS, Chang YH, Yang CT, Chou CK, Ou HT, Kuo S. Longitudinal economic burden of incident complications among metabolic syndrome populations. Cardiovasc Diabetol. 2024;23(1):246.
6. Akinola PS, Tardif I, Leclerc J. Antipsychotic-induced metabolic syndrome: A review. Metab Syndr Relat Disord. 2023;21(6):294–305. https://doi.org/10.1089/met.2023.0003
7. Penninx BWJH, Lange SMM. Metabolic syndrome in psychiatric patients: Overview, mechanisms, and implications. Dialog Clin Neurosci. 2018;20(1):63–73. https://doi.org/10.31887/DCNS.2018.20.1/bpenninx
8. Libowitz MR, Nurmi EL. The burden of antipsychotic-induced weight gain and metabolic syndrome in children. Front Psychiatry. 2021;12:623681. https://doi.org/10.3389/fpsyt.2021.623681
9. Correll CU, Manu P, Olshanskiy V, Napolitano B, Kane JM, Malhotra AK. Cardiometabolic risk of second-generation antipsychotic medications during first-time use in children and adolescents. JAMA. 2009;302(16):1765–73. https://doi.org/10.1001/jama.2009.1549
10. Keepers GA, Fochtmann LJ, Anzia JM, Benjamin S, Lyness JM, Mojtabai R, et al. The American Psychiatric Association Practice Guideline for the treatment of patients with schizophrenia. Am J Psychiatry. 2020;177(9):868–72. https://doi.org/10.1176/appi.ajp.2020.177901
11. Bernardo M, Rico-Villademoros F, García-Rizo C, Rojo R, Gómez-Huelgas R. Real-world data on the adverse metabolic effects of second-generation antipsychotics and their potential determinants in adult patients: A systematic review of population-based studies. Adv Ther. 2021;38(5):2491–512. https://doi.org/10.1007/s12325-021-01689-8
12. Limankin OV. Personalized psychiatry: Achievements and prospects. Personalized Psychiatry and Neurology. 2021;1(2):126–7. https://doi.org/10.52667/2712-9179-2021-1-2-126-127
13. Castellani LN, Costa-Dookhan KA, McIntyre W B, Wright DC, Flowers SA, Hahn MK, Ward KM. Preclinical and clinical sex differences in antipsychotic-induced metabolic disturbances: A narrative review of adiposity and glucose metabolism. J Psychiatr Brain Sci. 2019;4:e190013. https://doi.org/10.20900/jpbs.20190013
14. Khasanova AK, Dobrodeeva VS, Shnayder NA, Petrova MM, Pronina EA, Bochanova EN, et al. Blood and urinary biomarkers of anti psychotic-induced metabolic syndrome. Metabolites. 2022;12(8):726. https://doi.org/10.3390/metabo12080726
15. Mironova OI, Berdysheva MV, Elfimova EM. MicroRNA: A clinician’s view of the state of the problem. Part 2. MicroRNA as a biomarker. Eurasian Heart Journal. 2023;(2):64–71 (In Russ.). https://doi.org/10.38109/2225-1685-2023-2-64-71
16. Dexheimer PJ, Cochella L. MicroRNAs: From mechanism to orga nism. Front Cell Dev Biol. 2020;8:409. https://www.doi.org/10.3389/fcell.2020.00409
17. Pozniak T, Shcharbin D, Bryszewska M. Circulating microRNAs in medicine. Int J Mol Sci. 2022;23(7):3996. https://www.doi.org/10.3390/ijms23073996
18. Gayoso-Diz P, Otero-González A, Rodriguez-Alvarez MX, Gude F, García F, De Francisco A, Quintela AG. Insulin resistance (HOMA-IR) cut-off values and the metabolic syndrome in a general adult population: Effect of gender and age: EPIRCE cross-sectional study. BMC Endocr Disord. 2013;13:47. https://doi.org/10.1186/1472-6823-13-47
19. Karpel’ev VA, Filippov YI, Tarasov YV, Boyarsky MD, Mayorov AY, Shestakova MV, Dedov II. Mathematical modeling of the blood glucose regulation system in diabetes mellitus patients. Annals of the Russian Academy of Medical Sciences. 2015;70(5):549–60 (In Russ.). https://doi.org/10.15690/vramn.v70.i5.1441
20. Bethesda M. Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework. Clin Pharmacol Ther. 2001;69(3):89–95. https://doi.org/10.1067/mcp.2001.113989
21. Vulf MA, Shunkina (Skuratovskaia) DA, Hung V, Komar AA, Zatolokin PA, Kirienkova EV, et al. Chemerin as a potential regulator of mitochondrial quality control in obese patients. Medical Immunology (Russia). 2021;23(4):881–6 (In Russ.). https://doi.org/10.15789/1563-0625-CAA-2227
22. Behnoush AH, Shobeiri P, Bahiraie P, Amirkhani N, Khalaji A, Peiman S. Chemerin levels in chronic kidney disease: A systematic review and meta-analysis. Front Endocrinol (Lausanne). 2023;14:1120774. https://www.doi.org/10.3389/fendo.2023.1120774
23. Alieva AM, Teplova NV, Reznik EV, Baikova IE, Makeeva LM, Kotikova IA, et al. Diagnostic and prognostic aspects of omentin in cardiovascular diseases. Russian Cardiology Bulletin. 2024;19(1):16–22 (In Russ.). https://doi.org/10.17116/Cardiobulletin20241901116
24. Pobozheva IA, Panteleeva AA, Polyakova EA, Dracheva KV, Razgildina ND, Galkina OV, et al. Subcutaneous adipose tissue omentin-1 in coronary artery disease patients. Medical Genetics. 2020;19(11):21–30 (In Russ.). https://doi.org/10.25557/2073-7998.2020.11.21-30
25. Lorente L, Martín MM, Varo N, Borreguero-León JM, Solé-Violán J, Blanquer J, et al. Association between serum soluble CD40 ligand levels and mortality in patients with severe sepsis. Crit Care. 2011;15(2):R97. https://www.doi.org/10.1186/cc10104
26. Wang MN, Han YB, Li Q, Guo L, Yang YM, Wang W, Zhang JC. Higher serum retinol binding protein 4 may be a predictor of weak metabolic control in Chinese patients with type 2 diabetes mellitus. J Int Med Res. 2012;40(4):1317–24. https://www.doi.org/10.1177/147323001204000410
27. Brandão-Lima PN, de Carvalho GB, Payolla TB, Sarti FM, Fisberg RM, Malcomson FC, et al. Circulating microRNAs showed specific responses according to metabolic syndrome components and sex of adults from a population-based study. Metabolites. 2022;13(1):2. https://www.doi.org/10.3390/metabo13010002
28. Solís-Toro D, Mosquera Escudero M, García-Perdomo HA. Association between circulating microRNAs and the metabolic syndrome in adult populations: A systematic review. Diabetes Metab Syndr. 2022;16(1):102376. https://www.doi.org/10.1016/j.dsx.2021.102376
29. Xavier G, Mauer J, Ota VK, Santoro ML, Belangero SI. Influence of antipsychotic drugs on microRNA expression in schizophrenia patients — a systematic review. J Psychiatr Res. 2024;176:163–72. https://doi.org/10.1016/j.jpsychires.2024.06.010
30. García-Giménez JL, Seco-Cervera M, Tollefsbol TO, Romá-Mateo C, Peiró-Chova L, Lapunzina P, Pallardó FV. Epigenetic biomarkers: Current strategies and future challenges for their use in the clinical laboratory. Crit Rev Clin Lab Sci. 2017;54(7–8):529–50. https://doi.org/10.1080/10408363.2017.1410520
31. Neznanov NG. A paradigm shift to treat psychoneurological disorders. Personalized Psychiatry and Neurology. 2021;1(1):1–2.
32. O’Brien J, Hayder H, Zayed Y, Peng C. Overview of MicroRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne). 2018;9:402. https://www.doi.org/10.3389/fendo.2018.00402
33. Saha S. Role of microRNA in oxidative stress. Stresses. 2024;4(2):269–81. https://doi.org/10.3390/stresses4020016
34. Włodarski A, Strycharz J, Wróblewski A, Kasznicki J, Drzewoski J, Śliwińska A. The role of microRNAs in metabolic syndrome-related oxidative stress. Int J Mol Sci. 2020;21(18):6902. https://www.doi.org/10.3390/ijms21186902
35. Carvalho GB, Brandão-Lima PN, Payolla TB, Lucena SEF, Sarti FM, Fisberg RM, Rogero MM. Circulating miRNAs are associated with low-grade systemic inflammation and leptin levels in older adults. Inflammation. 2023;46(6):2132–46. https://www.doi.org/10.1007/s10753-023-01867-6
36. Das K, Rao LVM. The role of microRNAs in inflammation. Int J Mol Sci. 2022;23(24):15479. https://www.doi.org/10.3390/ijms232415479
37. Engin AB, Engin A. Adipogenesis-related microRNAs in obesity. ExRNA. 2022;4:16. https://www.doi.org/10.21037/exrna-22-4
38. Agbu P, Carthew RW. MicroRNA-mediated regulation of glucose and lipid metabolism. Nat Rev Mol Cell Biol. 2021;22(6):425–38. https://www.doi.org/10.1038/s41580-021-00354-w
39. Dong M, Ye Y, Chen Z, Xiao T, Liu W, Hu F. MicroRNA 182 is a novel negative regulator of adipogenesis by targeting CCAAT/enhancer-binding protein α. Obesity (Silver Spring). 2020;28(8):1467–76. https://doi.org/10.1002/oby.22863
40. Wagschal A, Najafi-Shoushtari SH, Wang L, Goedeke L, Sinha S, deLemos AS, et al. Genome-wide identification of microRNAs regulating cholesterol and triglyceride homeostasis. Nat Med. 2015;21(11):1290–7. https://www.doi.org/10.1038/nm.3980
41. Cheng J, Cheng A, Clifford BL, Wu X, Hedin U, Maegdefessel L, et al. MicroRNA-144 silencing protects against atherosclerosis in male, but not female mice. Arterioscler Thromb Vasc Biol. 2020;40(2):412–25. https://www.doi.org/10.1161/ATVBAHA.119.313633
42. Irani S, Iqbal J, Antoni WJ, Ijaz L, Hussain MM. MicroRNA-30c reduces plasma cholesterol in homozygous familial hypercholesterolemic and type 2 diabetic mouse models. J Lipid Res. 2018;59(1):144–54. https://doi.org/10.1194/jlr.M081299
43. Trajkovski M, Hausser J, Soutschek J, Bhat B, Akin A, Zavolan M, et al. MicroRNAs 103 and 107 regulate insulin sensitivity. Nature. 2011;474(7353):649–53. https://doi.org/10.1038/nature10112
44. Liu W, Cao H, Ye C, Chang C, Lu M, Jing Y, et al. Hepatic miR-378 targets p110α and controls glucose and lipid homeostasis by modulating hepatic insulin signalling. Nat Commun. 2014;5:5684. https://doi.org/10.1038/ncomms6684
45. Kornfeld JW, Baitzel C, Könner AC, Nicholls HT, Vogt MC, Herrmanns K, et al. Obesity-induced overexpression of miR-802 impairs glucose metabolism through silencing of Hnf1b. Nature. 2013;494(7435):111–5. https://doi.org/10.1038/nature11793
46. Xu H, Du X, Xu J, Zhang Y, Tian Y, Liu G, et al. Pancreatic β cell microRNA-26a alleviates type 2 diabetes by improving peripheral insulin sensitivity and preserving β cell function. PLoS Biol. 2020;18(2):e3000603. https://doi.org/10.1371/journal.pbio.3000603
47. Ofori JK, Salunkhe VA, Bagge A, Vishnu N, Nagao M, Mulder H, et al. Elevated miR-130a/miR130b/miR-152 expression reduces intracellular ATP levels in the pancreatic beta cell. Sci Rep. 2017;7:44986. https://doi.org/10.1038/srep44986
48. Belgardt BF, Ahmed K, Spranger M, Latreille M, Denzler R, Kondratiuk N, et al. The microRNA-200 family regulates pancreatic beta cell survival in type 2 diabetes. Nat Med. 2015;21(6):619–27. https://doi.org/10.1038/nm.3862
49. Zhang F, Ma D, Zhao W, Wang D, Liu T, Liu Y, et al. Obesity-induced overexpression of miR-802 impairs insulin transcription and secretion. Nat Commun. 2020;11(1):1822. https://doi.org/10.1038/s41467-020-15529-w
50. Melkman-Zehavi T, Oren R, Kredo-Russo S, Shapira T, Mandelbaum AD, Rivkin N, et al. miRNAs control insulin content in pancreatic β-cells via downregulation of transcriptional repressors. EMBO J. 2011;30(5):835–45. https://doi.org/10.1038/emboj.2010.361
51. Price NL, Fernández-Tussy P, Varela L, Cardelo MP, Shanabrough M, Aryal B, et al. microRNA-33 controls hunger signaling in hypothalamic AgRP neurons. Nat Commun. 2024;15(1):2131. https://www.doi.org/10.1038/s41467-024-46427-0
52. Taouis M. MicroRNAs in the hypothalamus. Best Pract Res Clin Endocrinol Metab. 2016;30(5):641–51. https://www.doi.org/10.1016/j.beem.2016.11.006
53. Zhang D, Yamaguchi S, Zhang X, Yang B, Kurooka N, Sugawara R, et al. Upregulation of mir342 in diet-induced obesity mouse and the hypothalamic appetite control. Front Endocrinol (Lausanne). 2021;12:727915. https://www.doi.org/10.3389/fendo.2021.727915
54. Sangiao-Alvarellos S, Pena-Bello L, Manfredi-Lozano M, Tena-Sempere M, Cordido F. Perturbation of hypothalamic microRNA expression patterns in male rats after metabolic distress: Impact of obesity and conditions of negative energy balance. Endocrinology. 2014;155(5):1838–50. https://www.doi.org/10.1210/en.2013-1770
55. Mak KWY, He W, Loganathan N, Belsham DD. Bisphenol A alters the levels of miRNAs that directly and/or indirectly target neuropeptide Y in murine hypothalamic neurons. Genes (Basel). 2023;14(9):1773. https://www.doi.org/10.3390/genes14091773
56. Derghal A, Djelloul M, Azzarelli M, Degonon S, Tourniaire F, Landrier JF, et al. MicroRNAs are involved in the hypothalamic leptin sensitivity. Epigenetics. 2018;13(10–11):1127–40. https://doi.org/10.1080/15592294.2018.1543507
57. Dobrodeeva VS, Abdyrahmanova AK, Nasyrova RF. Personalized approach to antipsychotic-induced weight gain prognosis. Personalized Psychiatry and Neurology. 2021;1(1):3–10. https://doi.org/10.52667/2712-9179-2021-1-1-3-10
58. Holm A, Possovre ML, Bandarabadi M, Moseholm KF, Justinussen JL, Bozic I, et al. The evolutionarily conserved miRNA-137 targets the neuropeptide hypocretin/orexin and modulates the wake to sleep ratio. Proc Natl Acad Sci USA. 2022;119(17):e2112225119. https://www.doi.org/10.1073/pnas.2112225119
59. Siegert S, Seo J, Kwon EJ, Rudenko A, Cho S, Wang W, et al. The schizophrenia risk gene product miR-137 alters presynaptic plasticity. Nat Neurosci. 2015;18(7):1008–16. https://www.doi.org/10.1038/nn.4023
60. Azhar S, Dong D, Shen WJ, Hu Z, Kraemer FB. The role of miRNAs in regulating adrenal and gonadal steroidogenesis. J Mol Endocrinol. 2020;64(1):R21–R43. https://www.doi.org/10.1530/JME-19-0105
61. Aranda A. MicroRNAs and thyroid hormone action. Mol Cell Endocrinol. 2021;525:111175. https://www.doi.org/10.1016/j.mce.2021.111175
62. Vaira V, Verdelli C, Forno I, Corbetta S. MicroRNAs in parathyroid physiopathology. Mol Cell Endocrinol. 2017;456:9–15. https://www.doi.org/10.1016/j.mce.2016.10.035
63. Martinez B, Peplow PV. MicroRNAs as potential biomarkers for diagnosis of schizophrenia and influence of antipsychotic treatment. Neural Regen Res. 2024;19(7):1523–31. https://doi.org/10.4103/1673-5374.387966
64. Zhang HC, Du Y, Chen L, Yuan ZQ, Cheng Y. MicroRNA schizophrenia: Etiology, biomarkers and therapeutic targets. Neurosci Biobehav Rev. 2023;146:105064. https://doi.org/10.1016/j.neubiorev.2023.105064
65. Zaki MB, Abulsoud AI, Ashraf A, Abdelmaksoud NM, Sallam AM, Aly SH, et al. The potential role of miRNAs in the pathogenesis of schizophrenia — a focus on signaling pathways interplay. Pathol Res Pract. 2024;254:155102. https://doi.org/10.1016/j.prp.2024.155102
66. Chan YL, Ho CSH, Tay GWN, Tan TWK, Tang TB. MicroRNA classification and discovery for major depressive disorder diagnosis: Towards a robust and interpretable machine learning approach. J Affect Disord. 2024;360:326–35. https://doi.org/10.1016/j.jad.2024.05.066
67. Ding R, Su D, Zhao Q, Wang Y, Wang JY, Lv S, Ji X. The role of microRNAs in depression. Front Pharmacol. 2023;14:1129186. https://doi.org/10.3389/fphar.2023.1129186
68. Elfaki I, Mir R, Mir MM, AbuDuhier FM, Babakr AT, Barnawi J. Potential impact of microRNA gene polymorphisms in the pathogenesis of diabetes and atherosclerotic cardiovascular disease. J Pers Med. 2019;9(4):51. https://doi.org/10.3390/jpm9040051
69. Gottmann P, Ouni M, Zellner L, Jähnert M, Rittig K, Walther D, et al. Polymorphisms in miRNA binding sites involved in metabolic diseases in mice and humans. Sci Rep 2020;10:7202. https://doi.org/10.1038/s41598-020-64326-4
70. Villanova F, Di Meglio P, Nestle FO. Biomarkers in psoriasis and psoriatic arthritis. Ann Rheum Dis. 2013;72(S2):ii104–10. https://doi.org/10.1136/annrheumdis-2012-203037
Supplementary files
![]() |
1. Tables 1–2 | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(187KB)
|
Indexing metadata ▾ |
Review
For citations:
Shnayder N.A., Nasyrova R.F., Pekarets N.A., Grechkina V.V., Petrova M.M. Circulating MicroRNAs Are Promising Biomarkers for Assessing the Risk of Antipsychotic-Induced Metabolic Syndrome (Review): Part 1. Safety and Risk of Pharmacotherapy. (In Russ.) https://doi.org/10.30895/2312-7821-2025-478