Preview

Safety and Risk of Pharmacotherapy

Advanced search

Ketoprofen Comparative Pharmacokinetics Analysis in Humans and Animals: A Review

https://doi.org/10.30895/2312-7821-2025-497

Abstract

INTRODUCTION. Ketoprofen is a non-steroidal anti-inflammatory drug (NSAID) with pronounced analgesic, anti-inflammatory and antipyretic effect. Ketoprofen pharmacokinetics is comparatively well described in various in vivo models. Since it is potentially possible to create new dosage forms of ketoprofen, with pharmacokinetics studies contributing to high-quality pharmaceutical development, a comparative assessment is relevant for the data on animals and humans.

AIM. This study aimed to identify animal species relevant for preclinical studies of different ketoprofen dosage forms by summarising bioanalytical methods used to assess pharmacokinetics and by comparing different test systems.

DISCUSSION. Reversed-phase high-performance liquid chromatography with ultraviolet/mass spectrometric detection and acetonitrile or methanol-based eluents in various buffer solutions is the most ubiquitous method for ketoprofen analysis in biomaterials. Ketoprofen pharmacokinetics was studied in humans and animals of several phylogenetic species using various dosage forms (injectable solutions, tablets, paste forms, etc.) and the relevant administration (intravenous, intramuscular, oral, transdermal). High drug bioavailability was noted for different routes. Maximum concentration (Cmax) range at similar doses and similar time parameters (time to maximum concentration, Tmax, half-life, T1/2 and mean residence time, MRT) for the three main administration routes (oral, intravenous and intramuscular) was comparable in humans and rats, cats, and dogs; thus these test systems were suggested for pharmacokinetics studies of ketoprofen preparations.

CONCLUSIONS. The analysis suggested that rats and larger animals (cats, dogs) can serve as test systems in ketoprofen pharmacokinetics studies, at least for oral, intravenous, and intramuscular administration. Using ketoprofen as an example, the study showed feasibility of integrating heterogeneous pharmacokinetic data, as well as comparison challenges due to variable test systems, study objects, dosages, and administration routes.

About the Authors

E. M. Petrova
Research-and-manufacturing company “HOME OF PHARMACY”
Russian Federation

Elizaveta M. Petrova

3/245 Zavodskaya St., Kuzmolovsky urban-type settlement, Vsevolozhsky district, Leningrad region 188663



V. M. Kosman
Research-and-manufacturing company “HOME OF PHARMACY”
Russian Federation

Vera M. Kosman, Cand. Sci. (Pharm.)

3/245 Zavodskaya St., Kuzmolovsky urban-type settlement, Vsevolozhsky district, Leningrad region 188663



M. V. Karlina
Research-and-manufacturing company “HOME OF PHARMACY”
Russian Federation

Marina V. Karlina, Cand. Sci. (Biol.)

3/245 Zavodskaya St., Kuzmolovsky urban-type settlement, Vsevolozhsky district, Leningrad region 188663



M. N. Makarova
Research-and-manufacturing company “HOME OF PHARMACY”
Russian Federation

Marina N. Makarova, Dr. Sci. (Med.)

3/245 Zavodskaya St., Kuzmolovsky urban-type settlement, Vsevolozhsky district, Leningrad region 188663



V. G. Makarov
Research-and-manufacturing company “HOME OF PHARMACY”
Russian Federation

Valery G. Makarov, Dr. Sci. (Med.), Professor

3/245 Zavodskaya St., Kuzmolovsky urban-type settlement, Vsevolozhsky district, Leningrad region 188663



References

1. Vdovichenko VP, Korshak TA, Boroznova ES, et al. Ketoprofen: in search of first-choice NSAIDs. Medical News. 2021;(8):51–3 (In Russ.). EDN: FHZWUV

2. Serrano-Rodríguez JM, Serrano JM, Rodríguez JM, et al. Pharmacokinetics of the individual enantiomer S-(+)-ketoprofen after intravenous and oral administration in dogs at two dose levels. Res Vet Sci. 2014;96(3):523–5. https://doi.org/10.1016/j.rvsc.2014.03.021

3. Belyatskaya AV, Krasnyuk (Jr) II, Krasnyuk II, et al. Ketoprofen: Application and dosage forms. Drug Development & Registration. 2017;(2):102–7 (In Russ.). EDN: XOQJOP

4. Jamali F, Brocks DR. Clinical pharmacokinetics of ketoprofen and its enantiomers. Clin Pharmacokinet.1990;19(3):197–217. https://doi.org/10.2165/00003088-199019030-00004

5. Sartsi-Puttini P, Atzeni F, Lanata L, et al. Pain and ketoprofen: What is its role in clinical practice? Reumatismo. 2010;62(3):172–88. (In Russ.). https://doi.org/10.4081/reumatismo.2010.172

6. Balabanova RM, Chichasova NV, Shmidt EI. Does ketoprofen lysine salt have advantages in relieving pain in rheumatic diseases? Polyclinic. 2011;(3):128–31 (In Russ.). EDN: TWGDCR

7. Verlan NV. New dosage forms of nonsteroidal anti-inflammatory drugs — improved efficacy and safety. Siberian Medical Journal. 2013;119(4):127–8 (In Russ.). EDN: QIWQWP

8. Taratukhin EO. Analgesic and anti-inflammatory therapy: Prospects for the use of ketoprofen. Therapy. 2017;7(17):21–4 (In Russ.). EDN: ZVMSZD

9. Kaushik K, Sudheer P. Formulation and evaluation of niosomal drug delivery system of ketoprofen. RGUHS J Pharm Sci. 2016;5(4):173–80. https://doi.org/10.5530/rjps.2015.4.7

10. Saif AA, Alburyhi MM, Noman M. Ketoprofen-excipient compatibility studies for advanced drug delivery systems development. World J Pharm Pharm Sci. 2025;14(4):92–123. https://doi.org/10.20959/wjpps20254-29603.

11. Bimbrawh S, Chopra S, Ansari MJ, et al. Biocompatible phospholipid-based nanovesicular drug delivery system of ketoprofen: Systematic development, optimization, and preclinical evaluation. Biotechnol Appl Biochem. 2023;70(1):51–67. https://doi.org/10.1002/bab.2328

12. Kosman VM, Karlina MV, Makarova MN. Experience in the development of bioanalytical techniques by HPLC with UV detection. Pharmacy. 2020;69(3):23–35 (In Russ.). https://doi.org/10.29296/25419218-2020-03-04

13. Ali A, Afzal S, Ashraf M, et al. Pharmacokinetic study of ketoprofen in healthy sheep under local conditions of Pakistan. J Anim Plant Sci. 2012;22(3):588–92.

14. Anwer M, Rasheed M, Ashraf M. Pharmacokinetics of ketoprofen in healthy donkeys in Pakistan. J Anim Plant Sci. 2012;22(4):966–9.

15. Lorier M, Magallanes L, Ibarra M, et al. Stereoselective pharmacokinetics of ketoprofen after oral administration of modified-release formulations in caucasian healthy subjects. Eur J Drug Metab Pharmacokinet. 2016;41(6):787–93. https://doi.org/10.1007/s13318-015-0313-2

16. Kokki H, Tuomilehto H, Karvinen M. Pharmacokinetics of ketoprofen following oral and intramuscular administration in young children. Eur J Clin Pharmacol. 2001;57(9):643–7. https://doi.org/10.1007/s002280100339

17. Navarre CB, Ravis WR, Campbell J, et al. Stereoselective pharmacokinetics of ketoprofen in llamas following intravenous administration. J Vet Pharmacol Ther. 2001;24(3):223–6. https://doi.org/10.1046/j.1365-2885.2001.00321.x

18. Al Katheeri NA, Wasfi IA, Lambert M, et al. Pharmacokinetics of ketoprofen enantiomers after intravenous administration of racemate in camels: Effect of gender. J Vet Pharmacol Ther. 2000;23(3):137–43. https://doi.org/10.1046/j.1365-2885.2000.00264.x

19. Radwan MA. Zidovudine, diclofenac and ketoprofen pharmacokinetic interactions in rats. J Pharm Pharmacol. 2000;52(6):665–9. https://doi.org/10.1211/0022357001774507

20. Pelligand L, King JN, Hormazabal V, et al. Differential pharmacokinetics and pharmacokinetic/pharmacodynamic modelling of robenacoxib and ketoprofen in a feline model of inflammation. J Vet Pharmacol Ther. 2014;37(4):354–66. https://doi.org/10.1111/jvp.12107

21. Fosse TK, Horsberg TE, Haga HA, et al. Enantioselective pharmacokinetics of ketoprofen in piglets: The significance of neonatal age. J Vet Pharmacol Ther. 2011;34(2):153–9. https://doi.org/10.1111/j.1365-2885.2010.01205.x

22. Nixon E, Almond GW, Baynes RE, Messenger KM. Comparative plasma and interstitial fluid pharmacokinetics of meloxicam, flunixin, and ketoprofen in neonatal piglets. Front Vet Sci. 2020;7:82. https://doi.org/10.3389/fvets.2020.00082

23. So JW, Park HH, Lee SS, et al. Effect of microneedle on the pharmacokinetics of ketoprofen from its transdermal formulations. Drug Deliv. 2009;16(1):52–6. https://doi.org/10.1080/10717540802518082

24. Tuttle AD, Papich M, Lewbart GA, et al. Pharmacokinetics of ketoprofen in the green iguana (Iguana iguana) following single intravenous and intramuscular injections. J Zoo Wildl Med. 2006;37(4):567–70. https://doi.org/10.1638/06-029.1

25. Karlina MV, Kosman VM, Pozharitskaya ON, et al. An experimental study of the pharmacokinetics of the ketoprofen nanosystem for inhalation administration. Experimental and Clinical Pharmacology. 2016;79(7):21–4 (In Russ.). https://doi.org/10.30906/0869-2092-2016-79-7-21-24

26. Qiu HX, Liu J, Kong H, et al. Isobolographic analysis of the antinociceptive interactions between ketoprofen and paracetamol. Eur J Pharmacol. 2007;557(2–3):141–6. https://doi.org/10.1016/j.ejphar.2006.11.017

27. Ravuri HG, Satake N, Balmanno A, et al. Pharmacokinetic evaluation of a novel transdermal ketoprofen formulation in healthy dogs. Pharmaceutics. 2022;14(3):646. https://doi.org/10.3390/pharmaceutics14030646

28. Medina-Lopez R, Vara-Gama N, Soria-Arteche O, et al. Pharmacokinetics and pharmacodynamics of (S)-ketoprofen co-administered with caffeine: A preclinical study in arthritic rats. Pharmaceutics. 2018;10(1):20. https://doi.org/10.3390/pharmaceutics10010020

29. Lees P, Taylor PM, Landoni FM, et al. Ketoprofen in the cat: Pharmacodynamics and chiral pharmacokinetics. Vet J. 2003;165(1):21–35. https://doi.org/10.1016/s1090-0233(02)00168-5

30. Knych HK, Arthur RM, Steinmetz S, McKemie DS. Pharmacokinetics of ketoprofen enantiomers following intravenous and oral administration to exercised Thoroughbred horses. Vet J. 2016;207:196–8. https://doi.org/10.1016/j.tvjl.2015.09.018

31. Kokki H, Le Liboux A, Jekunen A, et al. Pharmacokinetics of ketoprofen syrup in small children. J Clin Pharmacol. 2000;40(4):354–9. https://doi.org/10.1177/00912700022009053

32. Porażka J, Karbownik A, Murawa D, et al. The pharmacokinetics of oral ketoprofen in patients after gastric resection. Pharmacol Rep. 2017;69(2):296–9. https://doi.org/10.1016/j.pharep.2016.11.010

33. Satterwhite J, Boudinot F. Pharmacokinetics of ketoprofen in rats: effect of age and dose. Biopharm Drug Dispos.1992;13(3):197–212. https://doi.org/10.1002/bdd.2510130306

34. Greene W, Mylniczenko ND, Storms T, et al. Pharmacokinetics of ketoprofen in nile tilapia (Oreochromis niloticus) and rainbow trout (Oncorhynchus mykiss). Front Vet Sci. 2020;7:585324. https://doi.org/10.3389/fvets.2020.585324

35. Porażka J, Szałek E, Żółtaszek W, et al. Influence of obesity on pharmacokinetics and analgesic effect of ketoprofen administered intravenously to patients after laparoscopic cholecystectomy. Pharmacol Rep. 2020;72(3):763–8. https://doi.org/10.1007/s43440-019-00042-9

36. De Koster J, Boucher JF, Tena JK, et al. Co-formulation of ketoprofen with tulathromycin alters pharmacokinetic and pharmacodynamic profile of ketoprofen in cattle. J Vet Pharmacol Ther. 2022;45(1):69–82. https://doi.org/10.1111/jvp.12999

37. Williams RL, Upton RA. The clinical pharmacology of ketoprofen. J Clin Pharmacol. 1988;28(s1):S13–22. https://doi.org/10.1002/j.1552-4604.1988.tb05971.x

38. Debruyne D, de Ligny B, Ryckelynck J, et al. Clinical pharmacokinetics of ketoprofen after single intravenous administration as a bolus or infusion. Clin Pharmacokinet. 1987;12(3):214–21. https://doi.org/10.2165/00003088-198712030-00003

39. Hurault de Ligny B, Debruyne D, Ryckelynck JP, et al. Pharmacokinetics of intravenous ketoprofen. Therapeutic value in renal colic. Nephrologie. 1989;10(1):23–6 [In French]. PMID: 2716941.

40. Wong C, Wang DP. Pharmacokinetics of ketoprofen after intravenous and intramuscular administrations to rabbits. Drug Dev Ind Pharm. 1994;20(6):1075–83. https://doi.org/10.3109/03639049409038352

41. Wang S, Zhong H, Liu S, et al. Studies on pharmacokinetics of ketoprofen injection in rats. Lat Am J Pharm. 2015;4(7):1311–31.

42. Kokki H, Karvinen M, Jekunen A. Pharmacokinetics of a 24-hour intravenous ketoprofen infusion in children. Acta Anaesthesiol Scand. 2002;46(2):194–8. https://doi.org/10.1034/j.1399-6576.2002.460213.x

43. Engalycheva GN, Syubaev RD. Relevant species selection for preclinical safety studies of medicines: A review. Safety and Risk of Pharmacotherapy. 2025;13(1):31–43 (In Russ.). https://doi.org/10.30895/2312-7821-2025-460

44. Miroshnikov MV, Sultanova KT, Makarova MN, Makarov VG. A comparative review of the activity of enzymes of the cytochrome P450 system in humans and laboratory animals. Prognostic value of preclinical models in vivo. Translational Medicine. 2022;9(5):44–77 (In Russ.). https://doi.org/10.18705/2311-4495-2022-9-5-44-77

45. Morozova TE, Shatskiy DA, Shikh NV, et al. Pharmacogenetic aspects of postoperative anesthesia with ketoprofen in cardiac surgery patients. Rational Pharmacotherapy in Cardiology. 2021;17(5):719–23 (In Russ.). https://doi.org/10.20996/1819-6446-2021-10-11


Supplementary files

1. Table 1
Subject
Type Исследовательские инструменты
Download (158KB)    
Indexing metadata ▾

Review

For citations:


Petrova E.M., Kosman V.M., Karlina M.V., Makarova M.N., Makarov V.G. Ketoprofen Comparative Pharmacokinetics Analysis in Humans and Animals: A Review. Safety and Risk of Pharmacotherapy. (In Russ.) https://doi.org/10.30895/2312-7821-2025-497

Views: 493


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2312-7821 (Print)
ISSN 2619-1164 (Online)